
July, 1990
Volume 1, No. 5

The Journal of Apple II Programming

Kansas
or Bust!

In this issue:
I Computer Title

both The Publisher's Pen

Author

Ross Lambert
re: KCFestiveness, What's Gookin', Mind Control

Page

3

8 Bit Speech Recognition David Gauger 5
re: a speech recognition hardware and software project

llgs Illusions of Motion Stephen Lepisto 27
re : the third installment of Steve's figs animation series

8 bit MD-BASIC Jay Jennings 32
re: a review of the new Applesoft pre-processor

llgs SouthPaw Jason Blochowiak 35
re: writing a permanent initialization file in APW and MPW figs

both Vaporware Murphy Sewall 44
re: the industry-wide ruminations of Murph the Magnificent

$3.50

" Fantastic Savings
" Easy Installation
" No Solder Required
" Complete Instructions
• 10 Year Shelf Life
" Top Quality Lithium

New kit restores your Apple IIGs
If you purchased an Apple IIGS computer before August 1989 (512K model) , a

Lithium battery was soldered onto the computer board at the factory and the internal
clock started ticking. It is just a matter of time until the battery runs out of juice and
your computer forgets what day it is and any special settings you have selected in
the Control Panel.

If the software you are running uses the date and time to keep track of records
you could be in for real trouble when the clock runs out. The IIGS is also known to
lose disk drives along with numerous other side effects caused by a dead battery.

Before the introduction of Nite Owl's Slide-On battery, the normal method for
replacing the IIGS battery was to pack your computer up and take it to your local
Apple dealer. That was very inconvenient , time consuming, and expensive for the
typical computer owner.

Slide-On battery replacement is not much more difficult than changing a light
bulb. Using wire cutters, scissors, or nail clippers, the old battery is removed leaving
the original wires still soldered to the mother board. The new Slide-On battery has
special terminals which have been designed to fit onto the old battery wires. It
usually takes only a couple of minutes. Complete, easy-to-follow instructions are
included with every kit.

Typically, our customers have reported that the original equipment batteries
have an average life expectancy of 2 to 3 years. This is about half as long as they
were supposed to last. Slide-On replacement kits include Heavy Duty batteries
which should provide for a longer battery service life.

We highly recommend that every IIGS owner keep a spare battery on hand,
Slide-On kits are $14.95 ea. ready for when the inevitable battery failure occurs. These Lithium batteries have a
$12 ea. in quantities of 1 0+. shelf life of over 10 years, and come with a full90 day satisfaction guarantee.

~~~~.,.-~--

WRAITH 
Adventure Game · - ---

Special 
Introductory 
Price $9.95* 

Font Collection -The A2-Central staff" has spent years 
searching out and compiling hundreds of fiGS font s. These 
fonts are packed onto eight 3 5 inch disks. They work with 
IIGS paint, draw, and word processing programs. Includes a 
program to unpack them and an Appleworks data .file. $39 

This graphic adventure game comes complete on a 
single 3.5 inch disk with on-screen instructions, a 
map, demo play option, and dungeons which 
were too vast and expansive to fit on 5.25" disks. 

The object is to search out and destroy the evil 
WRAITH to save the mythical island of Arathia. 
To succeed at this quest the adventurer must fend 
off many monsters, learn magic spells, and buy 
weapons and armor to defeat the evil WRAITH. 

Works on ANY Apple][ with a 3.5" drive. It 
will have a retail price of $14.95. One of the best 
software values ever! *Offer expires 12/31/90 

Please give us a call today at: (913) 362-9898 
JPfuo~IOl-Oopyooli© FAX: (913) 362-5798 

~-----------------l 

I Nite Owl Productions I 
I 5734 Lamar Avenue A I 
I Mission, KS 66202 I 
I USA I L _________________ J 

(Cut & Pa,te Address Label) 

Telephone #: 
Purchase 

Order 

Expir.JLion Date 

Quantity Description Price Amoimt 

Slide-On Battery Kits 

WRAITH Adventure 

Font Collection 

Signature for Credit Card Orders 

$ 14.95 

$ 9.95 

$ 39.00 
Kansas 

Sales Tax 
Shipping & 
llandling Please include $2 shipping and 

handling I $5 for overseas orders. 
Kansas residents add 6% sales tax . TOTAL 

· Prices may Change without notice. 



Copyright (C) 1990, Ariel Publishing, All Rights Reserved 

Publisher & Editor-in-Chief 
Classic Apple Editor 
Apple llgs Editor 
Contributing Editors 

Subscription Services 

Ross W. Lambert 
Jerry Kindall 
Eric Mueller 
Walter Torres-Hurt 
Mike Westerfield 
Steve Stephenson 
Jay Jennings 
Tamara Lambert 
Becky Milton 

Introductory subscription prices in US dollars: 

• magazine 
1 year $29.95 2 years $56 

·disk 
1 year $69.95 6 mo $39.95 3 mo. $21 

Canada and Mexico add $5 per year per product ordered. 
Non-North American orders add $15 per year per product 
ordered. 

WARRANTY and LIMITATION of LIABILITY 

Ariel Publishing, Inc. warrants that the information in 8116 is 
correct and useful to somebody somewhere. Any subscriber 
may ask for a full refund of their last subscription payment at 
any time. Ariel Publishing's LIABILITY FOR ERRORS AND 
OMISSIONS IS LIMITED TO THIS PUBLICATION'S PUR
CHASE PRICE. In no case shall Ariel Publishing, Inc., Ross 
W. Lambert, the editorial staff, or article authors be liable for 
any incidental or consequential damages, nor for ANY dam
ages in excess of the fees paid by a subscriber. 

Subscribers are free to use program source code printed 
herein in their own compiled, stand-alone applications with no 
licensing application or fees required. Ariel Publishing prohib
its the distribution of source code printed in our pages 
without our prior permission. 

Direct all correspondence to: Ariel Publishing, Inc., P.O. Box 
398, Pateros, WA 98846 (509) 923-2249. 

Apple, Apple II, Apple lie, Apple llgs, Apple lie, Apple lie+, Ap
ple Talk, Apple Programmers Workshop, and Macintosh are 
all registered trademarks of Apple Computers, Inc. 

AppleWorks is a registered trademark of Claris, Corp. 

ZBasic is a registered trademark of Zedcor, Inc. 

Micol Advanced Basic is a registered trademark of Micol 
Sytems, Canada 

We here at Ariel Publishing freely admit our shortcomings, but 
nevertheless strive to bring glory to the Lord Jesus Christ. 

The 
Publisher's 
Pen 
by Ross W. Lambert 

Welcome to our first annual KansasFest issue! Yes, 
yes, I know. KansasFest is not the actual title of the 
A2-Central Developer's Conference, but it is such a 
truly festive event that it goes by that name more 
often than its proper one. What a joy to go hang out 
where the spirit of the Apple II lives on stronger than 
ever! 

We're cooking 

I get a lot of requests for Ariel Publishing to produce 
this kind of book or that kind of book or this kind of 
developer tool or that kind ... I just wanted to let you 
know that we are working on several things that will 
be useful to y'all. We just can't rush 'em; as Don 
Lancaster said in The Incredible Secret Money Ma
chine, "Iff'n it ain't cooked, don't serve it." 

It is sage advice we're trying to follow. 

Incidentally, when I determined to launch 8/16, I 
was told that I'd need a quarter of a million dollars 
and a reserve that would let us run in the red for two 
years. By the time you read this, the magazine 
operations should have crossed over into the black. 

This entire scenario was further highlighted in my 
mind when I had an interesting conversation with 
the president of a Macintosh software company. 
This fellow said, "I like you, Ross. and I want to see 
you succeed. Why are you messing around with the 
Apple II?" 

I was my typical obsequious self, not wanting to 
offend. But I really should have said, "Let's compare 
balance sheets." 

His company lost $200,000+ in the first quarter of 
1990. 



Propaganda Alert 

Rajiv Mehta is one ofthe marketing geeks at Apple, 
Inc. I was reading a transcript of some statements he 
made about the Apple II recently . Although his 
remarks were generally pro-Apple II, I grew rather in
censed about one little phrase. He prefaced one of his 
main ideas with the words, "Although there are 
limits to Apple II technology ... " 

I think Bill Mensch (developer of the 65C02, 65816, 
etc.) probably knows a little more about the hard
ware side of things than does marketing maven 
Rajiv. And "Wild Bill" (as I affectionately refer to him) 
has a vision for the Apple II that blows my mind. And 
if that is not enough, take a look at our hardware 
hacker column this month. What other computer 
has an architecture that permits you to develop 
hardware add-ons like this for under $20? I assure 
you that David's project and the software that goes 
with it have incredible commercial implications. 

Mr. Mehta, unless you are prepared to explain in 
detail exactly how the Apple II is limited, then I 
suggest you keep your propaganda to yourself. I see 

your statement as a subtle attempt at mind control. 
It is apparent to me that some at Apple, Inc. still don't 
believe in the Apple II long term, and statements like 
yours are designed to get us to believe that we ought 
to move to a "better" computer after the next GS 
comes out, or perhaps before. 

Poppycock. 

If the rumors about the features of the next GS are 
even halfway true, then all the GS needs is competi
tive pricing and a real marketing commitment from 
the boys up at the big house. 

I certainly recognize that. on the whole, Apple, Inc. is 
starting to rediscover the II. I appreciate John 
Sculley's comments about the "Macintosh Ilgs". I 
appreciate the fine work done by the systems soft
ware group in the last year. I am anxiously awaiting 
the next GS CPU. I am not an ungrateful wretch. But 
don't kick my dog, slander my mother, or tell me the 
II series is technologically limited, Rajiv. It's future 
is only limited by your imagination. 

" ... the single most important business-oriented 
product for the Apple II since Apple Works.,, 

\ ............... ~.~-~-·~-':'-.•. :-.·.·.·:~~:::~:~~:::~~:=~·~=~~::::~::-.-·:·:-~~:-'.·."'~·"·.-.· .... · ···.··· ····· "'·":·.-...;.;:.,.,..~~---·"':'1~-·-·.· · ~···:·-:~ .... ~~:-:~:-·-:···:~:--:=~· · '"·" ...... ,.;..-><'·.:')!.;,.,,., .. ,.,,:-~~~~~ , 
··-:-

APPLE I I 
i: 

BY CHARLES H. GAJEWAY -~, 
S:· 

,)_; 

~' Masterful database. Are you 
f .. ready for a sweeping statement? Here 

goes: I think that DB Master Profes
sional (Stone Edge Technologies: $295) 
is the single most important business
oriented product for the Apple II since 
the introduction of Apple Works. As the 
only true relational database program 
for the Apple lie, lie, and IIGS, DBMP 
can give a 128K Apple II the kind of 
data-handling power and flexibility nor
mally associated with MS-DOS and 
Macintosh systems running expensive 
and hard-to-learn software. (A relational 
database can link, or relate, information 

from several data files.) 
I jumped right into the program with 

my standard test data-a pair of files 
that tracks a record collection, with in
formation on album titles, artists, mu
sic category, song lengths, and com
posers. This test is complex, and many 
well-regarded programs-including 
Apple Works-have failed miserably at 
it. Even with very little experience, I 
was able to get the system up and run
ning with DBMP in a surprisingly short 
time. 

Report generation is extremely pow
erful, making it easy to design anything 
from a mailing label, to a point-of-sale 
invoice (that automatically updates in
ventory records, of course), to custom
ized form letters. Whereas most data-

base programs must be combined with a 
word processor to do complex reports or 
mail merge, DBMP does it all. 

The manuals are complete, well il
lustrated, and generally clear, although 
they are sometimes overly technical and . 
fragmented. You will need to keep both 
books handy at all times, especially as 
you try out some of the more sophisti
cated features. And while the program 
is operated with a simple menu system, 
DBMP takes a fair amount of time to 
learn because of its array of features and 
options. DBMP gives you all the power 
you need and can even import your 
current files from Apple Works (except 
version 3.0) and other programs. • 

Reprinted with permission from 
Home Office Computing. 

Stone Edge Technologies, Inc. 
P.O. Box 3200 • Maple Glen, PA 19002 • (215) 641-1825 DB Master Professional 



Speech Recognition: Give 
Your Apple ][-Ears! 

by David Gauger 

David is a music instructor at Oral Roberts University 
in Oklahoma. His obviously professional interest in 
sound combined with his love for the Apple II has 
synergetically produced this mind boggling project. I 
sincerely wish you could all have a chance to see this 
in action - it is quite startling to actually have your II 
respond to your voice. 

Not only is it sheer jun. but it is also has commercial 
implications. especially for making programs acces
sible to the handicapped. I hope a couple of you take 
this ball and run with it. 

Even if you don't, however, the software itself -
especially the assembly module - has some very 
interesting techniques worth checking out. 

==Ross== 

Communicating with a computer has never been 
easy from the human point of view. Since the earliest 
computers we've been forced to interact with them 
primarily through a typewriter-style keyboard. If 
your typing skills are anything like mine, you've 
often wanted to bypass the keyboard and speak 
directly to your Apple. 

This column's project will enable you to do exactly 
that. )[-Ears is a combination hardware/software 
system that makes it possible for you to add speech 
input to your own programs. You can literally speak 
to your computer and have it understand and act on 
the words you say. 

The hardware is simple. easy to build, and interfaces 
to the game port. All the parts are available from 
your local Radio Shack for under $20.00. The 
system is organized as two machine language rou
tines which are called from your own programs. 
These routines are loaded at $6000 (24576) . 
Memory required for the routines and overhead 
typically runs about 3K of memory for 40 words. A 
program using the maximum 255 words increases 
the memory requirement to just under lOK. The 
system runs on any Apple )[. but due to timing 
routines, accelerators wil! have to be tumed off. and 
GS users will have to set the clock speed to "Normal". 
][-Ears is compatible with both ProDOS and DOS 
3.3. 

What's the Catch? 

If this sounds too good to be true, it just might be, 
depending on what your expectations are. )[-Ears 
will not allow you to dictate a letter into your Apple 
for editing and print out. for instance. It may even 
mis-identify words every so often. (All present day 
speech recognition systems make errors on a regular 
basis.) However. ][-Ears is good enough to be quite 
useful in many areas. Applications for the physically 
handicapped. general experimentation. and hands
off operation of your computer are three obvious 
uses. 

Though speech recognition is on the cutting edge of 
technology. perfect speech recognition is not a real
ity yet. It is being studied in several different areas 
of computer science. including the artificial intelli-



gence community, because so many factors are 
involved in understanding speech. Consider. for 
example, the fact that our speech tends to be con
nected. We go immediately from one word to the next 
with no space in between. Computers have a tough 
time deciding when one word ends and the next 
begins. After all. from a computer's point of view, 
words are just a succession of sounds. 

Regional accents. background noise. speech impedi
ments. and gender all contribute to the difficulties of 
computer speech recognition. Voice inflection is 
another problem the computer must deal with. As 
you speak, many factors change depending on the 
sentence. Are you saying a question, command, 
emphatic statement. or sleepy comment? Depend
ing on the type of sentence, your voice inflection. 
loudness. speech rhythm and speed. syllable accent. 
etc. can all change drastically. 

As an example. watch the way the word "left" 
changes in the following sentences: 

• "The butter is to the left of the cheese in 
the refrigerator." 

• 'You mean we don't have any left??" 

•(As barked out by a drill sergeant) "Left!
Left!- Left Right Left!" 

"Computers have a tough time 
deciding when one word ends and 
the next begins". 

All this is to point out that human language is highly 
variable. We very rarely say the same word in exactly 
the same way. Computers are exactly the opposite. 
They are rigid, unforgiving, and always do everything 
in exactly the same way. This basic incompatibility 
is part of what makes computer speech recognition 
such a difficult problem. 

][-Ears Solutions 

)[-Ears seeks to minimize these problems by simpli
fying them. While the English language has many 
thousands of words, ) [-Ears has a practical limit of 
15 or 20 and is most accurate with just a few. As for 
the connected speech problem, )[-Ears accepts only 
one distinctly spoken word at a time. 

To overcome regional accents. speech impediments. 
gender. etc .. ][-Ears is "speaker dependent." This 
means the system must be pre-trained by the person 
whose words are to be identified. In other words.)[
Ears will only identify words it has been trained to 
listen for. In addition, it will only understand the 
person who trained it. To train ][-Ears. you say one 
word several times while )[-Ears listens and records 
the data. If you like, this data can be stored on disk 
so retraining is not necessary every time you use the 
system. 

To account for inflection and the variableness of 
speech. )[-Ears incorporates a user adjustable 
"fudge factor" where each word is identified and. 
passed back to the calling program with a score 
which indicates how sure )[-Ears is that it correctly 
identified the word you said. The calling program 
can then decide whether the score is good enough to 
accept )[-Ears suggested match as the correct iden
tification of the word. 

Break Out the Soldering Iron 

To get your speech recognition system running, 
build the hardware according to the circuit diagram 
appropriate for your machine. The circuit is the 
same, only the connector to your particular flavor of 
Apple changes. Use Fig. 1 if you have an Apple H. or 
)[+ (16 pin DIP connector). If you have a I lc or I I 
c+withaDB-9connector, use Fig. 2 . Ifyourmachine 
is I le or I IGS you can use either one. 

The parts lists (Fig. 3 and 4) do not include a low cost 
dynamic microphone - the kind that come with 
cassette recorders. answering machines. etc. I'm 
assuming you've got one around the house already. 
Any low impedance (about 500 ohms) mic should 
work just fine. If you don't have one. Radio Shack 
has one of these also for about $10.00. 



Schematic Diagram- 16 Pin DIP 
Use with Apple)(,][+, I /gs 

7 
LM 386 

6 Game Port 

4 5 
5v 1 16 

Dynamic SwO 
2 15 

Mic. SK 
3 14 

4 13 

5 12 

6 11 

6 
7 10 

Gnd 
8 9 

Ooto-
Coupler 5 

3 4 

Figure #1 

If you build circuits regularly, you'll already have 
many of the parts in your "junk box". Construction 
and component layout are not critical. Insulate all 
bare wires with electrician's tape and make sure 
you orient the chips correctly. The small indented 
dot on the top of the chip shows where pin one is. 
Pay particular attention when wiring up the con
nector to your Apple. We're dealing with low volt
ages here so shock is not a danger, but wrong 
connections or shorts could damage your Apple. 
Just inspect your connections carefully checking 
for stray bits of wire or solder that could cause 
problems. 

To set the potentiometer (and to make sure the 
circuit is functioning correctly). plug in your micro
phone then type in and run this 2 line program: 

10 IF PEEK(49249) >127 THEN PRINT 
20 GOTO 10 

"*" · I 

If the circuitry is functioning correctly. the program 
will come up in one of 2 states: either the screen will 
fill up with asterisks, or it will be doing nothing. The 
objective is to adjust the potentiometer to the point 
where the asterisks just stop filling the screen. If 
they're filling it, tum the "pot" (as it's called) until they 
just barely stop. If the asterisks weren't filling the 
screen, tum the pot the other way to get them to start. 
then back off just a hair. At this point, the asterisks 
should come on the screen only when you speak into 
the microphone. 

In working with this hardware for a while, I've gotten 
the best results holding the microphone perpendicu-



Schematic Diagram - DB -9 
Use with Apple I /e. I /c+, I /gs 

10 mfd 

~------+~~-------. 

B 

2 7 
LM 386 

3 6 

Dynem~ic:-t---~~----~ 
Mic. 

Ooto-
2 Coupl~r 5 

3 4 

Figure #2 

lar to but in contact with my lips and speaking past 
(not directly into) it. This way it's always in the same 
place with respect to the volume and sounds your 
making. (A boom mic would help here.) If the 
distance between the mic and your lips varies much 
at all between the training and recognition phases, 
][-Ears begins to see different waveforms generated 
by the hardware causing recognition errors. 

When adjusting the pot. turn it until the asterisks 
appear during words and particularly the "sM sound 
(try h issing like a snake). but don't appear when 
you're breathing in or out. If many asterisks appear 
during your breathing this indicates that the bias 
level (pot) is too high. Turn the knob so that fewer 
asterisks appear. This adjustment can be a bit 
tricky, but it's not hard once you get the hang of it. 

Note that you'll probably need to readjust this setting 
whenever you change opto-couplers or micro
phones. 

Also, once this adjustment is made, leave it for the 
duration of your session. If you move the knob 
during recognition, )[-Ears will begin to misidentify 
your words most of the time. The only solution is to 
readjust the level using the two line adjustment 
program, then retrain the system from scratch. This 
can be a bit of a nuisance. For turnkey systems 
where the user is not technically minded, the best 
bet would be to build the interface box with the 
potentiometer inside, accessible only with a screw
driver through a hole drilled in the box. This way you 
could set the adjustment once and forget it. How
ever. since this is a hardware hacking column, I 



figured you'd want the adjustment right out where 
you can get at it! 

If you can get your hardware to respond as described 
above, then it's working properly. If not, double 
check your connections, the chip orientation, and 
for shorts. Also, some opto-couplers work better 
than others. Since you got 3 in the Radio Shack 
package, try one of the others. My particular pack
age had a chip number TIL 119 which did not work 
as well as the other two. 

Entering the Software 

Next, boot up your assembler, then type in and 
assemble the source code called EARS.S. (See List
ing 1). Altemately, you can enter just the machine 

code directly from the monitor. Save it on disk with 
the command: 

BSA VE EARS.OBJ ,A$6000,IA96 

At this point, assuming that there are no hardware 
or software bugs. the system is ready to go. If you'd 
like a simple Applesoft demonstration of one way to 
use speech recognition in your own programs. type 
in the Listing 2 called "RECOG.DEMO~ 

RECOG.DEMO: 
A Demonstration Program 

RECOG.DEMO shows two elementary ways to use 
speech recognition in your programs: controlling 

Parts List for 16 Pin DIP Version 

Item Catalog# Price 
Box w/ circuit board 270-283 $3.99 
LM386 amplifier chip 276-1731 $1.09 
Opto-Couplers (Pkg of 3) 276-139 $1.98 
Chip Sockets (Pkg of 2) 276-1995 $ .59 
5K potentiometer 275-1714 $1.09 
220 ohm resistor (1/4 watt) 271-1313 $ .39 
10 microfarad capacitor 272-1025 $ .59 
Knob (Pkg of 2) 274-402 $1.19 
Microphone mini-jack (Pkg of 2) 274-248 $1.69 
Wire (2 conductor w/ shield-3ft) 278-1276 $3.29 
16 Pin DIP Header* N/A $ .65 

Total $16.54 

* The 16 Pin DIP Header is not made by Radio Shack anymore. Instead, it is part #16 HP 
available from Jameco Electronics, 1355 Shoreway Road, Belmont, CA 94002 (415) 592-
8097. It is also available from many other sources. 

Figure #3 



Parts List for DB-9 Version 

Item Catalog# Price 
Box w/ circuit board 270-283 $3.99 
LM386 amplifier chip 276-1731 $1.09 
Opto-Couplers (Pkg of 3) 276-139 $1.98 
Chip Sockets (Pkg of2) 276-1995 $ .59 
5K potentiometer 275-1714 $1.09 
220 ohm resistor (1!4 watt) 271-1313 $ .39 
10 microfarad capacitor 272-1025 $ .59 
Knob (Pkg of 2) 274-402 $1.19 
Microphone mini-jack (Pkg of 2) 274-248 $1.69 
Wire (2 conductor w/ shield - 3 ft) 278-1276 $3.29 
DB-9 connector (male) 276-1537B $ .99 

Total $16.88 

Figure #4 

program flow, and item selection from a menu. Many 
other things are possible, I just chose these because 
they were the first two things that came to mind! 

When you run RECOG.DEMO, the first few screens 
illustrate the idea of controlling program flow. A 
screen of text information is presented along with a 
prompt at the bottom of the screen which says "Say 
'OK' to continue ... " At this point, II-Ears is waiting for 
any and all microphone input. When you say "OK". 
the microphone picks it up, program flow returns to 
Applesoft, and the next screen of information is 
presented. 

This is a more elegant solution to the familiar "Press 
<RETURN> to continue ... " prompt used so much to 
control program flow. You'll note that at this point 
in the program, )[-Ears is yet to be trained. Because 
of this, it is not really recognizing the word OK. 
Instead, it is just responding to any sound at all. 
Rapping the mic on the desk, or saying a nonsense 
word would work just as well as saying OK. This does 

not have to be the case. however. If you like, )[-Ears 
can be trained to understand the word "OK" and then 
respond only if you say it. This would prevent the 
program from responding to background noise or 
inadvertent triggers (talking to someone else. drop
ping the mic, etc.) 

Following the information screens. you train the 
system to understand your voice. At this point you 
are asked to repeat the numbers 1 through 6 and the 
word "return" ten times. Say the words naturally, 
but remember how you say them. The biggest 
problem people have with this system is that they say 
the words diiTerently during training than they do 
when they expect )[-Ears to identify their speech in 
a program. 

When the training is finished you're presented with 
a standard menu. The numbers you just trained the 
system to understand match up with the numbered 
items on the menu. To highlight a menu item, simply 
say its number. To execute a highlighted item, say 
"return". This is essentially a classic AppleWorks-



style menu implemented using exclusively voice 
control. The RECOG .DEMO program is not meant to 
be a polished example of what can be done. It merely 
shows a few ways to use the EARS machine language 
subroutines and voice control in a typical Applesoft 
application. 

Theory of Operation 

](-Ears thinks of your speech not as letters and 
sounds but as waveforms and frequencies. These 
waveforms change drastically depending on what 
sound you're making with your mouth. The different 
classifications of sounds all have a different wave
form. For example, fricative sounds such as MFK or MSK 
have a random, high frequency waveform. Plosive 
sounds like MP", "TK, MK", and many times MCH" have 
a short burst of high frequencies followed by a longer 
period of lower frequencies. Each sound has an 
identifying frequency response fingerprint. 

Words usually consist of more than one sound. Over 
the course of an entire word, the frequencies present 
will change according to the sound currently being 

formed. To recognize a word by its frequency re
sponse, we need to know what frequencies are 
present at several points along the word. The more 
points where we identify the frequency spectrum, 
the better. The objective is to create a map ofthe fre
quencies present at several points along the word 
that we can compare to frequency maps of other 
words. If the maps match, we've found the word. At 
least we hope we've found the word! 

](-Ears works by recording all sounds coming in the 
mic for about 3/4 of a second. It then analyzes the 
resulting waveforms for frequency content at four 
equally spaced points along the recording. Next, it 
condenses each frequency analysis down to 8 bytes, 
resulting in a total of only 32 bytes of identifying 
information for each word. This last step drastically 
cuts down the information required to store a word's 
identifying information. It also facilitates and speeds 
up comparisons. 

How It Works - Hardware 

The hardware in this system is simple because 

Waveform vs. Pushbutton 

v 
0 
l 
t 
s 

5 

0 -

Original Audio Waveform 

What the Pushbutton Input Sees: 
....-- r- .....-

"--- '-- L..-- ._ 

Time--> 

Figure #5 



almost all the work is done in software. The only 
function the hardware has is to "push" the gameport 
pushbutton in sync with the waveform your voice 
creates as you say the words. 

phototransistor to alternately connect and discon
nect the pushbutton input to 5 volts. (See Fig. 5) 
Your Apple is unaware that the circuitry is doing the 
button pushing. All it knows is that something is 

The first chip, an LM386, is 
a simple audio amplifier. (If 
you really want to impress 
someone, just tell them ](
Ears uses a '386 chip!) The 
output from a microphone is 
very small, and nowhere 
near what we need. The 
LM386 boosts the signal 
from the mic up to usable 
levels. The output from the 
LM386 is used to drive an 
LED (light emitting diode) so 
that the LED brightness 
varies with the waveform of 
your voice. 

The second chip, an opto
coupler, does most of the 
hardware work. Despite it's 
fancy name, this device 
contains just the familiar 
LED and a phototransistor 
linked optically in the same 
package. When we apply 
our waveform voltage from 
the LM386 to the LED side of 
the opto-coupler, the LED 
brightness follows the wave
form. The phototransistor 
sees this light and begins to 
conduct electricity accord
ing to the brightness of the 
light it sees. 

In essence, the phototran
sistor acts as a switch. 
When the waveform swings 

Memory Map 

$6700 

$6300 
$62EO 

$6000 

T ~mp lat~ tab 1~ 
(Known words) 

Vari.ab 1~ length. 

M.ax t.ab le length 
= 8160 bytes. 

R.aw D.at.a buffer 

Unknown Word bffr 

Machine L.angu.age 
Routines. 

(Room for 
expansion) 

Figure #6 

pushing the button aw
fully fast - hundreds of 
times a second! 

How It Works- The 
Software 

The ](-Ears software has 2 
subroutines. RCRD 
handles all incoming 
words. Words are either 
stored in the table 
(learned) or stored in a 
buffer to be compared 
against those already 
stored in the table (recog
nized). FIND does the 
speech recognition by 
searching through all pre~ 
viously learned words 
looking for a match. 

Each word is condensed 
into a template. Each 
template has a number. If 
you record a word more 
than once (highly recom
mended). then each word 
can have more than one 
template. To reference a 
template in the ][-Ears 
routines you pass it's 
number in location 255 
(hex $FF) which I've called 
WORDNUM. A template's 
number can be anything 
from 0 to 254, and is as
signed by the host pro
gram. After recognizing a 
word, FIND returns the 
number of the word it 

positive, the LED lights up 
causing the transistor 
switch to tum on and con
nect the pushbutton input 
to 5 volts. The Apple sees 5 volts on the pushbutton 
input and knows a pushbutton has been "pushed." 
When the wave goes negative the transistor switch 
opens disconnecting the voltage, thereby releasing 
the button. ](-Ears uses the switching action of the 

found in WORDNUM and a 
the word's score in SCORELO, and SCOREHI (253 
and 254, respectively) which form the low and high 
byte of a 16 bit number. Before we discuss these 
routines, let's look at ][-Ears memory usage. 



As currently assembled, )[-Ears resides at $6000 
which is just above HIRES page 2. (See Fig. 6 for 
memory map.) The machine language routines, 
input buffer and overhead are 1792 bytes long total. 
Immediately following this at $6700 in memory is the 
template table. Template data for each word to be 
identified is placed at a location in this table accord
ing to a number you pass to the record routine in $FF 
(WORDNUM). Since ][-Ears numbers words from 0 
to 254, and each template is 32 bytes long, the 
longest this table can be is 8160 bytes. More likely, 
you'll have only 60 or 70 templates in the table 
resulting in a table length somewhere around 2K 
(2240 bytes). With 70 templates in the table, the 
total length for the machine language and template 
table portion ofRECOG.DEMO is 4288 bytes. (We'll 
talk about why there are 70 templates in the table 
when ][-Ears has to discriminate between only 7 
words later.) 

The Machine Language Routines 

The record routine (RCRD) is the heart ofthe system. 
This is the routine that records raw data, analyzes it 
for frequency content, and finally condenses this 
information down to a 32 byte template. This 
template is stored in a table of templates at an 
address dependent on what number you pass in 
WORDNUM. 

The number passed in WORDNUM acts both as a flag 
and as the number of the table location to store the 
resulting data at. If you pass 255 (hex $FF- acts as 
a flag). RCRD knows that the incoming word is to be 
identified, not stored as an entry in the table, and 
places the final data at $6300 which is the input 
location. If you pass any other number (0 to 254), 
RCRD knows that you want it to "leam" this word 
and place the final data in the template table which 
starts at $6700. 

When RCRD is first called it clears the 32 locations 
that will be filled with new template data to zero. then 
waits in a loop until it hears the first sound. After 
detecting the first sound it begins to fill the raw data 
buffer with samples of the incoming audio signal. 
RECOG.DEMO relies on the fact that RCRD waits in 
this loop when using RCRD to control program flow. 

The raw data buffer, located at $6300, is 1024 bytes 
long. When recording, we "take pictures" (samples) 

of the pushbutton input 8192 times. Since it takes 
about 3/4 of a second to take all8192 samples, we 
have a sampling rate of roughly 10,000 samples/ 
second. According to Nyquist's theorem, this is high 
enough to record frequencies as high as 5000 Hz 
which is adequate for our purposes. 

''Since it takes about 3/4 of a sec
ond to take all 8192 samples, we 
have a sampling rate of roughly 
10,000 samples/second." 

The pushbutton is either on or off at any one time, so 
we can represent its state with one bit. If the button 
is pushed at the instant RCRD samples the sound 
wave, it stores a one in the raw data buffer. If not 
pushed, RCRD stores a zero. Each byte will hold 8 
separate bits so we can pack 8 samples in one byte. 
This is how 8192 samples will fit in 1024 bytes. 

The hardware's job is to push the button in sync with 
the incoming waveform. This is so that when RCRD 
is done sampling, the raw data buffer will contain a 
digital representation of the waveform in the form of 
a series of 1's and O's. (See Fig. 7) Since we know 
that one complete wave (cycle) consists of both a 
positive and a negative swing of the wave, and we 
also know that the samples come at regular intervals 
(about 1 every 10,000th of a second). we can calcu
late the relative length of the wave by counting the 
number of samples in one whole cycle. 

A complete cycle consists of a string of 1 bits followed 
by a string of 0 bits. When the next string of 1 bits 
starts we know this particular cycle is finished. 
Obviously. short cycles will have smaller counts and 
long cycles will have larger counts. (See Fig. 8) 
Frequency and cycle length are directly related. If we 
know the length of a cycle. we also know its fre
quency. 

Frequency Analysis 

The next step is to sort the cycle length (frequency) 
into one of 8 frequency ranges. Once we have the 



Call BoX" TPS 
The Toolbox Programming System 

Finally ... a BASIC you can use! 
All the features that once made Applesoft the language of choice among most users are still valid today. However, the increased 
functionality of today's Apple II requires access beyond the capabilites available in regular Applesoft. The Call Box TPS provides 
you with the "missing link" necessary for programming the advanced features of the Ilgs while maintaining the simplicity and feel of 
good old Applesoft. 

* Immediate mode access to the tools ... commands are directly executable from the keyboard! * The most common tool functions 
are automated by simple call structures! *No Assembly, Linking or Compiling is required ... the ideal prototyping language! * 
Most GS/OS and ProDOS 8 calls are available at the same time! * Capable of fine Machine Code like control using specialized 
commands! * Totally Memory Managed and compatible with NDA's, CDA's and initialization code! * Directly launchable from 
programs like the Finder™ or HyperLaunch™! *Uses templates generated by the Call Box WYSIWYG Editors such as Windows, 
Dialogs Menus, Icons and Cursors! 

Creating a Call Box BASIC program is a simple 2 step 
process. Step 1 involves using the Call Box WYSIWYG 
editors to design any graphic entity needed by your program such 
as Windows, Menu, Dialogs, Icons, Cursors or Pixel Images. 
Step 2 consists of incorporating your entities into a BASIC 
program using specialized calls provided by the BASIC driver. 

Currently, the system has four WYSIWYG (What You See Is 
What You Get) Editors which produce the various graphic entities 
used by the Call Box BASIC Driver such as Windows, Dialogs, 
Menus, Icons, Cursors and Pixel Images. Just "point and click" 
to compose entites exactly to your liking without any of the 
guesswork or number crunching associated with the "paper and 
pencil" method. 

You want to change an items color? Just click it... You want to 
add a radio button? Just click it. When everything is the way you 
want it, just save it! 

The entities created by the editors are not limited to Call Box 
BASIC programs; the editors also produce APW-ORCAfMTM 
source code, object code and relocatable resource fork data 
allowing other languages such as Assembly, Cor Pascal to enjoy 
the full benefits of object oriented programming. Once you have 
created your entities, you can incorporate them into your program 
which greatly reduces the setup and overhead usually associated 
with these structures. 

The Call Box TPS comes on 3 - 3.5 inch disks and has a 130+ 
page hard cover ring binder manual. The disks include demos, 

® So What Software· 
10221 Slater Ave. 

(714) 964-4298 VISA/Mastercard accepted 

Icons 

Cursors 

Dialogs 

samples and utilities to ease the task of creating a program. 
The system is installable on hard drives or can be run from as 
little as 1 - 3.5 inch disk drive. The recommended memory for 
this system is 1 Megabyte (minimum), however 768K is 
enough for most applications. 

Continued support for this system is available for a nominal 
annual membership fee thru the Call Box Programmers 
Association (C.B.P.A.). This association supplies you 
with the latest tech notes, sample code disks, software and 
manual upgrades plus a programmers bot-line number to help 
you with those "tricky" procedures that make your Apple Ilgs 
do amazing things! You will also receive newsletters and 
information on other So What Software products as well. 

The Call Box TPS is the total programming environment 
for the Applesoft BASIC programmer using the Apple IIgs, 
and YES! .. . Finally there is a BASIC you can use! 

Call Box TPS ......................................... $99.00 



length of the wave we can figure out which of the 
frequency bins it belongs in through a series of 
comparisons to threshold values. (The thresholds 
are the compare values found in the BINSORf 
routine at line 153 and following in the EARS.S 
listing.) This step is where the actual frequency 
analysis takes place. 

Frequency analysis is important to ][-Ears because 
it relies on the fact that the frequencies present at 
particular points along a word distinguish it from 
other words. Most of the information that distin
guishes one word from another is found in the higher 
(smaller numbered) frequencies. For this reason, 
the thresholds for the higher frequencies are very 
close together while lower frequencies all get lumped 
together. 

Generally, the threshold frequencies were chosen to 
detect the formant frequencies generated by the 
resonating of the various cavities in your head. 
mouth and throat. (Analyzing the formant content of 

a particular sound is a common way to do speech 
recognition.) By setting the thresholds to detect the 
formant frequencies we do a crude formant analysis 
and avoid having to go through the usual Fourier 
transforms with all their attendant math. If you find 
a series of threshold values that work better than 
these. let me know! 

Recall that ][-Ears does a frequency analysis at 4 
points along a word time-wise. Remember also that 
the raw data for a word is 1024 bytes. Obviously, 
since the data was taken sequentially, the data at the 
beginning of the buffer was taken at the start of the 
word and the data at the end of the buffer came from 
the end. By dividing the raw data buffer into 4 equal 
sections of256 bytes each (I call them "time slices"). 
we end up dividing the word into 4 different parts 
time-wise. 

The four separate frequency analyses are accom
plished by sorting the cycle lengths found in each 
time slice into their own set of 8 frequency bins. 

Sampling the Waveform 

What the Pushbutton Input Sees: 
5 

J lJl Volts 

0 

What RCRD Stores in Memory: 
Data : 0 1 1 1 0 0 0 0 0 0 
Sample- • : 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Time--> 

Figure #7 



Measuring Wavelengths 
Each cycle has a positive (1) and a negative (0) half. 

/ I 
Data: 0 11 1 1 11 lo 0 ol 1 1 0 0 0 

Sample •: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Time--> 

To c.a lculate w .ave lengths, .add the number of s.amp les in both the 
positive .and negative halves of the cycle. 

10 3 ? 

Data : 0 11 1 1 0 0 ol 11 1 o I l1 0 0 
Sample • : 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Time--> 

Figure #8 

(Each time slice has 2048 samples contained in 256 
bytes). The first time slice gets sorted into the first 
8 frequency bins, the second time slice into the 
second into the second 8 frequency bins, and so on, 
until all four time slices have been sorted into their 
respective bins. (See Fig. 9) This results in 32 bytes 
of data which we'll call a "template." 

RCRD stores the resulting template data in a table 
which starts at $6700. The exact location depends 
on what value N you passed to the routine in 
WORDNUM. Since each word results in 32 bytes of 
data, each entry in the table is an offset ofN*32 from 
the base location of $6700. If you passed a value of 
5 in WORDNUM, for example, the template data 
would be stored in the 32 bytes starting at $67 AO. 
(5x32=160 which is hex $AO, and obviously, 
$6700+$A0=$67 AO) 

The Recognition Algorithm 

The actual recognition of speech is accomplished by 
the FIND routine. It compares the template of the 
unknown word found at $6300 to all the templates 
in the table at $6700. FIND can search up to 255 
templates. Because searching all 255 templates is 
unnecessary when you may only have 70 entries in 
the table, FIND allows you to specifY how many 
templates you would like it to search. Pass the 
number ofthe highest table entry you want searched 
in WORDNUM before calling FIND. FIND works 
backwards from the number in WORDNUM to tem
plate 0 in its search. Any higher numbered tem
plates will not be searched. This makes it possible to 
have several different vocabularies in memory at 
once if you plan their locations in the table carefully. 



The mechanism FIND uses to recognize a word is 
surprisingly simple: subtraction. To subtract 
means to find the difference between 2 numbers. 
Each word is represented by a 32 byte template, and 
it is a simple matter to subtract one word's template 
from another's to find out how different they are. The 
first byte in the template for word "A" is subtracted 
from the first byte in the template for word "B", the 
second byte of" A" is subtracted from the second byte 
of"B" and so on until all bytes have been subtracted. 
During the subtraction process it is not important 
whether the result of the subtraction is positive or 
negative. We only want to know the magnitude of the 
difference between the two numbers. 

FIND adds the result of each subtraction to the 
previous total to form a cumulative score (total 
difference) for the word which is passed back to the 
calling program. The bigger the score, the more 
different the two templates are. A perfect match 
results in a score of zero. Speech recognition 
becomes a simple matter of finding which template 
in the table has the smallest score when compared to 
the unknown word's template. This method is quite 
fast: ][-Ears can search through 255 templates in 
roughly 1/2 second! 

Fast Talkers Beware 

The speed of speech can vary greatly. We may say a 
word quickly once, then rather slowly the next time. 
For )[-Ears. words said quickly may have all sorts of 
data for the word in the first 3 slices, for example, and 
nothing in the 4th slice. This would create a large 
error count when subtracting templates during rec
ognition. Recognition errors would result. 

For this reason, )[-Ears weights the various time 
slices in terms of their contribution to the final error 
total. If the error to be added to the total comes from 
one of the first 2 slices, then the full value of the error 
is added to the total. If the error comes from the 3rd 
slice, it's divided in half before being added to the 
total so it has only a 50% weighting. If it's from the 
last slice, it's divided yet again so that it has only a 
25% weight in the final total. This minimizes the 
effects of speed changes when you say words be
cause large differences in the last 2 slices have less 

effect on the final score than they would have other
wise. 

The number of template with the lowest score is 
passed back to the host program in WORDNUM and 
its score (which is used as the confidence level) is 
placed in SCORELO and SCOREHI. Whereas FIND 
identifies the template with the lowest score, this 
template may or may not represent the right word. 
The final decision is made by the host program based 
on exactly how different the words are i.e. how high 
the score is. After all, if the best match has a 
relatively ·high score (greater than about 60 or 70), 
chances are we have not found the unknown word. 
If the difference is relatively low (20-30) it's quite 
likely that we have found the word. To sum up, FIND 
retums with the best match, but not necessarily the 
correct word. 

Problems with Recognition 

No matter how hard you try, you'll never be able to 
say a word exactly the same way twice. This causes 
][-Ears problems because it's trying to match two 
words that aren't exactly the same. For example, the 
template in the table may reflect the fact that your 
vocal chords vibrated 439 times over the course of 
the word when you trained the system. However, 
when you wanted EARS to recognize the word, your 
vocal chords vibrated 445 times and you said the 
first syllable slightly stronger. 

One way to help ][-EARS deal with these differences 
is by entering multiple templates of the same word in 
the table when you train the system. This captures 
several different ways you say one of the target 
words. Then, no matter how you actually say the 
word, one of the templates will match during recog
nition. Clearly, the more templates you have for a 
particular word, the better off you are. The trade-off 
is that sooner or later, the user must train the system 
by saying the words many times. Also, the more 
templates you devote to each word, the fewer differ
ent words you'll have room for. 

Using multiple templates doesn't solve all problems, 
though. Some of the recognition errors stem from 
how people say the words during the training phase. 
RECOG.DEMO asks you to train the system with 7 



Raw Data vs. Condensed Form 

1 024 bytes of Raw Data 

Time--> 

I ~\ I 
Each 256 bytes = 

High 
Frequencies 

0-3 

4 

5 

1 "Time Slice" 

wm·Jin each time slice J 

cycle lengths are 

6 

./ sorted into 8 different 
/ frequency bands. 

Low 
Frequencies 

7-8 

9-10 

11-12 

13+ 

A word is stored in memory 
as a string of 32 by teos. While 
shown here as a 2 dimensional 
array for vi sua 1 clarity, the 
bytes are actually sequential 
in memory: first all the bins 
for slice one, then all those for 
slice two, etc. 

Each frequency band is 
represented by one byte 
which is the total count of 
a 11 the cycles found within 
that band of cycle lengths . 

Time Slices : 

2 3 

$C8 $F9 $07 

2 $06 $E4 $CA 

3 $80 $CC $13 

Frequency 4 $43 $50 $24 

Bins 5 $64 $7A $10 

6 $2A $3D $11 

7 $14 $09 $23 

8 $04 $12 $09 

Figure #9 

4 

$E3 

$00 

$03 

$22 

$29 

$09 

$15 

$08 



different words. each of which is said 10 times which 
amounts to 70 words. When saying these same 7 
words over and over again, people's voice inflection 
can get either "sing-songy" or like a monotone. As a 
result, ) [-Ears records templates that don't represent 
how the person normally says the words. Later, 
during the recognition phase, the person may say 
the words more 
naturally. ][-Ears 
then compares the 

first be recorded and stored in a special buffer. )[
Ears takes care of all this when you poke $FF in 
WORDNUM. This shows RCRD that the next word is 
to be identified, not stored in the template table. 
Next call RCRD and speak the word to be recognized. 
Finally. poke WORDNUM with the highest word in 
the template table you want searched and call FIND. 

That's all there is to 
it. FIND returns the 
number of the best 

incoming natural 
pronunciations 
against the mono
tone ones s tored in 
the template table 
and either mis-iden
tifies words or 

'The thing to remember is that 
the more words ][-Ears must 
identify, the more mistakes it 
makes." 

match in 
WORDNUM, and the 
difference between 
the two templates in 
SCORELO and 
SCOREHI (locations 
253 and 254 respec
tively). doesn't understand 

what they're saying. 

The obvious solution is to concentrate on saying the 
words naturally -just like you will say them when 
they need to be identified later. Another tip is to hold 
the microphone in the same place during both the 
training and recognition modes. Observing both of 
these suggestions will ensure a more accurate train
ing phase and fewer recognition errors later on. 

Using ][-EARS in Your Own Programs 

Adding speech recognition to your own programs is 
easy with ][-Ears. First, BLOAD the routines into 
memory with the Applesoft command: 

PRINT CHR$(4);"BLOAD EARS.OBJ" 

Next, train the system. In other words, record the 
templates that unknown words will be compared to. 
First, poke the number of the word to be learned in 
WORDNUM then call RCRD. This word number can 
be any value from 0 to 254, but remember to keep 
track of which number represents which word. For 
greatest accuracy. make at least 5 recordings of the 
same word as discussed before using 5 different 
word numbers. 

Once all the words have been learned, the system is 
ready to recognize speech. To identify a word it must 

What's the Score? 

To decide whether you have actually found the word, 
get the word's score with a statement such as: 

SCRE= 256 * PEEK(254) + PEEK(253) 

where SCRE will hold the score. Compare the score 
to a threshold level with a statement like: 

IF SCRE > 60 THEN GOSUB 1000 

where line 1000 begins the routine to handle an 
incorrectly identified word. In this case, if the score 
is below 60 the program assumes we have found the 
correct word. If it's 60 or above. then it assumes we 
have a false match and calls the error routine which 
probably asks the user to try again. Obviously, the 
lower the threshold level is, the closer a match it will 
have to be to avoid calling the error code. 

If FIND has truly found the word, get the word 
number with a statement like: 

WRD=PEEK(255) 

where WRD will hold the word number. 

Applications 

Now that your Apple understands speech, what can 



you do with it? Anything that requires a limited 
vocabulary is a candidate for conversion to voice 
control. True/False, Yes/no, High/Low, and Up/ 
Down pairs of responses all work very well with)[
Ears. Menus with less than 10 or so possible choices 
also work well. Numerical input is possible one digit 
at a time. ](-Ears can handle all ten digits (0 through 
9) plus the decimal point very easily. With 255 
locations available for templates, it is possible to 
train it to understand the entire alphabet using 9 
templates per letter. 

The thing to remember is that the more words](-Ears 
must identil)r. the more mistakes it makes. There are 
ways around this. One is to ask for verbal confirma
tion after a choice has been made. In the 
RECOG.DEMO program you'll notice that saying a 
number didn't activate a selection. it only moved the 
highlight bar to the item corresponding to that 
number. This allows you to say the number again if 
)[-Ears makes an error. Activation occurs only when 
you say "return". In effect. this is a kind of confirma
tion of your selection. 

Other ways to minimize errors include using fewer 
words, and words that sound quite different such as 
the yes/no or up/down pairs. The AppleWorks 
menu could be implemented using the words up, 
down. and return. for example. Up and down would 
move the highlight bar and return would activate the 
highlighted selection. 

Experimentation with all sorts of esoteric things is 
possible. How about identifying someone by the 
sound of their voice? If you have a speech synthe
sizer. interaction with the computer could be totally 
verbal: you speak to the computer and it speaks 
back! 

Since you have total control of the software. it is 
possible to incorporate artificial intelligence in the 
system as well. Suppose during the training phase. 
you programmed the computer to learn from its 
mistakes. If it mis-identifies a word. you could either 
add the template that fooled ][-Ears to the table. or 
use it to change the existing templates somehow. 
This way the system would learn as you go and make 
fewer and fewer errors. 

Modifications and Improvements 

Apple )['s through the I I e have a cassette port that 
functions very much like )[-Ears' hardware. Theo
retically, it should be possible to make ](-Ears soft
ware work with that port. Radio Shack makes a 
small battery powered amplifier (cat. #277-1008) 
that could be used to amplify the microphone. 
Output from the amp's external speaker jack could 
then be fed into the cassette input on the Apple. 
Because the cassette port electronics may differ in 
response to what the )[-Ears software expects. you 
may need to tweak the threshold values in the 
BINSORrmachine language subroutine. (BINSORr 
is at line 153 of the source listing.) I haven't tried this 
but in theory it should work. 

On the other hand, you can use ][-Ears hardware to 
simulate the cassette port hardware no longer found 
on later Apples. It is now possible to use all those 
speech digitization programs that used the cassette 
port for input. I even remember seeing an article that 
used the cassette ports for a crude (but inexpensive!) 
local area network. 

It is possible to account for the higher clock rates 
afforded by the GS and accelerator boards. By 
adjusting the delay to a larger value in line 62 of the 
assembly. it should be no problem to make ](-Ears 
work on a computer with a clock rate higher than the 
standard 1 MHz Apple clock. 

Conclusion 

)[-Ears offers an inexpensive alternative to keyboard 
entry for any Apple II computer. It is easy to use in 
your own programs and doesn't take much memory, 
particularly if you need to identil)r just a few words. 
It's also fun! Who knows what you can do with your 
Apple now that your computer has ears! 

, 
Late Breaking News: 

Ariel Publishing, Inc. acquires 
FAX capabilities. Our FAX 
phone number is: 

(509) 689-3136 



Listing 1 - RECOG.DEMO 

100 REM RECOG.DEMO 
110 REM C 1990 BY 
120 REM DAVID GAUGER II 
130 GOSUB 1610: REM !NIT SYSTEM 
140 GOSUB 1020: REM LEARN WORDS 
150 REM ** MAIN MENU ** 
160 HOME 
170 VTAB 2: HTAB 11 
180 INVERSE PRINT "SPEECH INPUT MENU": 

NORMAL 
190 FOR X = 0 TO 5: GOSUB 840: NEXT X 
200 VTAB 19: HTAB 5 
210 PRINT "SAY THE ITEM NUMBER TO SELECT, " 
220 HTAB 5 
230 PRINT "'RETURN' TO EXECUTE." 
240 X = 0: GOSUB 890 
250 GOSUB 940: REM GET A WORD 

590 HPLOT H1 + X,V1 +X TO H2 - X,V2 +X TO 
H3 - X,V3 -X TO H4 + X,V4 -X TO H1 + X, V1 + 
X 

600 RETURN 
610 REM ** DO QUIT 
620 HOME 
630 X = 0 
640 VTAB 18: HTAB 3 
650 PRINT "SAY THE ITEM NUMBER TO SELECT," 
660 HTAB 3 
670 PRINT "'RETURN' TO EXECUTE." 
680 IF X = 0 THEN VTAB 10: HTAB 8: INVERSE 

: PRINT QUIT$(0): NORMAL : VTAB 12: HTAB 8: 
PRINT QUIT$(1) 

690 IF X = 1 THEN VTAB 10: HTAB 8: PRINT 
QUIT$(0): VTAB 12: HTAB 8: INVERSE : PRINT 
QUIT$(1) 

700 NORMAL : GOSUB 940 
710 IF ER > ELEVEL THEN GOSUB 780: GOTO 

260 IF ER > ELEVEL THEN GOSUB 780: GOTO 620 
250 

270 WRD !NT (WRD / MAX) 
280 REM ** MOVE HIGHLIGHT BAR 
290 IF WRD + 1 < 7 THEN GOSUB 840:X 

GOSUB 890: GOTO 250 
REM ** IF RETURN, DO ITEM 

WRD: 

300 
310 
320 
330 
340 
350 
360 
370 

ON X+ 1 GOTO 330,340,420,480,500,620 
REM ** DO BOX/ERASE BOX 
INVERSE : GOTO 350 
NORMAL 
VTAB 1: HTAB 1: FOR Y 
PRINT"";: NEXT 
FOR Y = 2 TO 20 

1 TO 39 

380 VTAB Y: HTAB 1: PRINT"";: HTAB 39: 
PRINT"";: NEXT Y 

390 VTAB 21: HTAB 1: FOR Y = 1 TO 39: PRINT 
" "·. , . 

400 
NEXT Y 
GOTO 250 

410 REM ** DO CATALOG 
420 PRINT CHR$ (4);"CATALOG" 
430 PRINT : PRINT : PRINT 
440 VTAB 23: HTAB 5 
450 PRINT "SAY 'OK' TO CONTINUE ... "; 
460 GOSUB 940: GOTO 160 
470 REM ** DO BEEP SPEAKER 
480 FOR Y = 1 TO 3: PRINT CHR$ (7) : NEXT 

Y: GOTO 250 
490 REM ** DO HIRES DEMO 
500 TEXT : HOME : HGR : HCOLOR= 3 
510 H1 = O:V1 = O:H2 = 279:V2 = 0 
520 H3 = 279:V3 = 159:H4 = O:V4 = 159 
530 FOR X 0 TO 10: GOSUB 590: NEXT 
540 FOR X 20 TO 30: GOSUB 590: NEXT 
550 
560 
570 
580 

FOR X 40 TO 50: GOSUB 590: NEXT 
FOR X 60 TO 70: GOSUB 590: NEXT 
GOSUB 1570: TEXT : GOTO 160 
FOR X = 1 TO 30 

720 IF WRD < 6 THEN X = 0: GOTO 680 
730 IF WRD > 9 AND WRD < 20 THEN X 1: 

GOTO 680 
740 IF WRD > 35 AND X = 1 THEN 760 
750 GOTO 160 
760 HOME : END 
770 REM ** DO ERROR 
780 PRINT CHR$ (7) ; : VTAB 22: HTAB 5: 

INVERSE : PRINT "COULD NOT UNDERSTAND - TRY 
AGAIN" 

790 NORMAL 
800 FOR Z = 1 TO 500 
810 NEXT Z 
820 VTAB 22: CALL - 958: RETURN 
830 REM ** DO NORMAL MENU ITEM 
840 VTAB 5 + 2 * X: HTAB 8 
850 NORMAL 
860 PRINT ARRAY$(X) 
870 RETURN 
880 REM ** DO INVERSE MENU ITEM 
890 VTAB 5 + 2 * X: HTAB 8 
900 INVERSE 
910 PRINT ARRAY$(X): NORMAL 
920 RETURN 
930 REM ** DO RECOGNITION 
940 POKE WNUM,255: REM SET TO LISTEN 
950 CALL RCRD: REM GET WORD 
960 POKE WNUM,MAX * 7: REM HIGHEST WORD TO 

SEARCH 
970 CALL FIND: REM FIND WORD 
980 WRD = PEEK (255): REM PASS WORD BACK 

TO APPLESOFT 
990 ER = 256 * PEEK (254) + PEEK (253): 

REM GET SCORE 
1000 RETURN 
1010 REM ** TUTORIAL 
1020 HOME 



1030 VTAB 1: HTAB 3 
1040 INVERSE : PRINT "SPEECH RECOGNITION 

DEMONSTRATION" 
1050 NORMAL : POKE 34,1 
1060 VTAB 6: HTAB 1 
1070 PRINT "THIS DEMONSTRATION IS MEANT TO 

SHOW" 
1080 PRINT 

USE SPEECH" 
PRINT "SOME ELEMENTARY WAYS TO 

1090 PRINT PRINT "RECOGNITION IN YOUR OWN 
PROGRAMS." 

1100 VTAB 20: HTAB 1 
1110 PRINT "SAY 'OK' INTO THE MICROPHONE TO 

CONTINUE" 
1120 GOSUB 940: REM ML ROUTINE WAITS FOR A 

SOUND HERE 
1130 HOME 
1140 VTAB 6: HTAB 1 
1150 PRINT "OBVIOUSLY, CONTROLLING PROGRAM 

FLOW IS" 
1160 PRINT : PRINT "ONE SIMPLE WAY TO USE 

IT. INSTEAD OF" 
1170 PRINT : PRINT "HAVING TO REACH FOR THE 

'RETURN' KEY TO" 
1180 PRINT : PRINT "CONTINUE, THE USER JUST 

HAS TO SPEAK!" 
1190 GOSUB 1570 

HOME 
VTAB 1: HTAB 1: CALL - 868 

1200 
1210 
1220 
1230 
1240 

VTAB 1: HTAB 8: INVERSE 
PRINT "TRAINING THE COMPUTER": NORMAL 
VTAB 6: HTAB 1 

1250 PRINT "TO UNDERSTAND SPEECH THE COM
PUTER MUST" 

1260 PRINT : PRINT "LEARN WHAT YOUR SPEECH 
SOUNDS LIKE.": PRINT : PRINT 

1270 PRINT "CALLED 'TRAINING', WE DO THIS BY 
SAYING": PRINT : PRINT "A WORD TO THE COMPUTER 
MULTIPLE TIMES.": PRINT 

1280 GOSUB 1570 
1290 HOME : VTAB 6: HTAB 1 
1300 PRINT "YOU ARE ABOUT TO TRAIN YOUR 

APPLE TO" 
1310 PRINT PRINT "UNDERSTAND 7 DIFFERENT 

WORDS.": PRINT 
1320 PRINT : PRINT "AS YOU SAY THE WORDS, 

SPEAK NATURALLY" 
1330 PRINT : PRINT "AS YOU WOULD IN CONVER-

SATION.": PRINT 
1340 GOSUB 1570 
1350 HOME : VTAB 6: HTAB 1 
1360 PRINT "REMEMBER HOW YOU SAY THE WORDS 

BECAUSE" 
1370 PRINT 

IDENTIFY" 
1380 PRINT 

THE WAY YOU" 

PRINT "THE COMPUTER WILL TRY TO 

PRINT "UNKNOWN WORDS BASED ON 

1390 PRINT : PRINT "PRONOUNCED THESE." 
1400 GOSUB 1570 

TEXT : HOME : VTAB 1: HTAB 1 1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 

PRINT "PLEASE SAY THE FOLLOWING WORDS:" 
PRINT 
REM ** SYSTEM TRAINING HAPPENS HERE 
FOR X = 0 TO MAX 
PRINT "ONE": POKE WNUM,X: CALL RCRD 
PRINT "TWO": POKE WNUM,X + MAX: CALL RCRD 
PRINT "THREE": POKE WNUM,X + MAX * 2: CALL 

RCRD 
1490 PRINT "FOUR": POKE WNUM,X + MAX * 3: CALL 

RCRD 
1500 PRINT "FIVE": POKE WNUM,X + MAX * 4: CALL 

RCRD 
1510 PRINT "SIX": POKE WNUM,X + MAX * 5: CALL 

RCRD 
1520 PRINT "RETURN": POKE WNUM,X +MAX * 6: 

CALL RCRD 
1530 PRINT 
1540 NEXT X 
1550 RETURN 
1560 REM ** SAY 'OK' PROMPT 
1570 VTAB 22: HTAB 9 
1580 PRINT "SAY 'OK' TO CONTINUE ... " 
1590 GOSUB 940: RETURN 
1600 REM ** DO INIT 
1610 PRINT CHR$ (4};"BLOAD EARS.OBJ" 
1620 WNUM = 255 
1630 MAX = 9 : REM ** NUMBER OF COPIES OF EACH 

WORD 
1640 RCRD = 24576 
1650 FIND = 24579 
1660 ELEVEL = 70 

"1. 
"2. 
"3. 
"4. 
"5 . 
"6. 

1670 ARRAY$ (0} 
1680 ARRAY$(1} 
1690 ARRAY$(2} 
1700 ARRAY$(3} 
1710 ARRAY$ (4} 
1720 ARRAY$(5} 
1730 QUIT$(0} "1. 

DRAW BOX AROUND SCREEN" 
ERASE BOX AROUND SCREEN" 
CATALOG CURRENT DISK" 
BEEP SPEAKER" 
HIRES DEMO" 
QUIT" 

NO , I DON'T WANT TO QUIT" 
1740 QUIT$(1} = "2 . YES, I WANT TO QUIT NOW" 
1750 RETURN 

Liatinq 2: EARS.S 

1 ******************************** 
2 * 
3 * 
4 * 
5 * 
6 * 
7 * 
8 * 
9 * 

] [-Ears 
Speech Recognizer 

"EARS.S" 

c 1990 by 

By David Gauger II 

* 
* 
* 
* 
* 
* 
* 
* 



* 10 * 
11 * 
12 * 

Merlin 8 Assembler * 
* 

13 ******************************** 
14 
15 
16 
17 BINlLO 
18 BINlHI 
19 RAWLO 

ORG 

EQU 
EQU 
EQU 

pntr lo byte 
20 RAWHI EQU 

pntr hi byte 
21 SLICE EQU 
22 OUTBYTE EQU 

output byte 
23 WORDLO EQU 

$6000 

$06 ;bins ptr lo byte 
$07 ;bins ptr hi byte 
$08 ;raw data rcrd bffr 

$09 ;raw data rcrd bffr 

$EB ;time slice # (0-3) 
$EC ;temp storage of 

$ED ;current word's 
weighted diff,lo 

24 WORDHI EQU $EE ;current word's 
weighted diff,hi 

25 TEMPLO EQU $FA ;temp storage 
26 TEMPHI EQU $FB ;temp storage 
27 SCORELO EQU $FD ;lowest difference, 

lo 
28 SCOREHI EQU 

hi 
29 WORDNUM EQU 

dealing with 

$FE ;lowest difference, 

$FF ;#of word we're 

30 BUTTON EQU $C061 ;button 1 hard 
ware loc 

31 
32 RECORD 
33 FIND 
34 
35 * RECORD 

JMP 
JMP 

RECORD! ;record a word 
FINDl ;recognize word 

36 * Enter with Wordnum ho lding $FF to 
record unknown word 

37 * or a number from 0 to $FE showing 
which word to learn 

38 
39 RECORD! JSR 
40 JSR 

RCRD ;do recording 
CONDENSE ;condense into 

32 bytes in table 
41 RTS 
42 
43 RCRD 
44 
45 
46 

LOA 
STA 
LOA 
STA 

one too low 
47 
48 WAVEHI 

cycle? 

LDY 
BIT 

#$00 
RAWLO ;init recbufl 
#$62 
RAWHI ;init recbufh 

#$00 ;init byte cntr 
BUTTON ; pos 1/2 of 

49 
50 WAVELO 

BMI WAVEHI;yes wait until neg 
BIT BUTTON;neg 1/2 ofcycle? 

51 BPL WAVELO;yes wait for 
rising edge 

52 PAGELUP INC 
53 LOA 
54 CMP 
55 BEQ 
56 BYTELUP LOA 
57 
58 BITLUP 
59 

STA 
LDA 
ASL 

RAWHI ;next page 
RAWHI 
#$ 67 ; done yet? 
RCRDDUN ;yes 
#$01 
OUTBYTE ;init bit cntr 
BUTTON ;take a sample 

;hi bit=sample. 
Roll into carry 

60 ROL OUTBYTEroll sample 
into outbyte 

61 BCS STORBYTE;must need to 
store the byte 

62 LOX #04 ;delay length 
63 WAITLUP DEX 
64 BNE 
65 JMP 

again 
66 STORBYTE LDA 
67 STA 

buffer 
68 INY 

with page yet? 

;do a small delay 
WAITLUP ; 
BITLUP ;and do it all 

OUTBYTE ;get outbyte 
(RAWLO),Y;store in input 

;are we done 

69 BEQ PAGELUP ;yes 
70 JMP BYTELUP 
71 RCRDDUN RTS 
72 
73 * Condense - condenses raw data from lK 

down to 32 bytes. 
74 
75 CONDENSE LDA 
76 

buffer ptr, hi 

#$63 
RAWHI ;init input 

77 LDA #$00 
78 STA RAWLO ;init input 

buffer ptr, lo 
79 LOA WORDNUM ;get wordnum 

80 

81 
82 

flag 

word? 
CMP 

BEQ 
JSR 

83 JMP 
84 UNKNOWN LOA 

#$FF ;input unknown 

UNKNOWN ;yes 
INITWRD ;no-leanrntead 
LEARN IT 
#$62 ;put unknown 

wo rd in right bffr 
85 STA BINlHI ;init bin 

pointer for i nput 
86 LOA #$EO 
87 STA 
88 JSR 
89 LEARNIT LDY 
90 LDA 
91 STA 
92 LDX 
93 LOA 
94 
95 

STA 

BINlLO ;init bin ptr, lo 
CLEAR ;clear the area 
#$00 ;input counter 
#$04 ;# of slices t o use 
SLICE ;init slice cntr 
#$08 ;byte r ol l cntr 
#$00 
TEMPHI ;init result cntr 



96 * Positive half of wave 
97 
98 CLUPPOS LOA 
99 CBITLUP ASL 

carry 
100 BCC 

(RAWLO),Y ;get 8 samples 
;put a sample in 

NEGBIT ;must be neg 
half of wave now 

101 JSR NUCOUNT ;still positive: 
increment count 

102 DEX 
samples yet? 

103 BEQ 
104 JMP 
105 CBYTDUNP LOX 
106 !NY 

data position 
107 BEQ 

with slice 
108 JMP 
109 

;done w/ these 

CBYTDUNP ;yes 
CBITLUP ;no - do again 
i$08 ;re-init bit cntr 

;point to next 

CPAGEDUN ;must be done 

CLUPPOS ;do loop again 

110 * Negative half of wave 
111 
112 NEGBIT 
113 

JSR 
DEX 

samples yet? 

NUCOUNT ;update result 
;done with these 8 

114 BEQ CBYTDUNN ;yes 
115 JMP CBITLUPN ;no 
116 CLUPNEG LOA 
117 CBITLUPN ASL 

into carry 

(RAWLO),Y;get 8 more 
; roll a sample 

118 BCS WAVEDUN ;must be done 
with the wave 

119 JSR NUCOUNT ;not done yet: 
update result 

120 DEX ; done with 
these samples yet? 

121 BEQ CBYTDUNN ;yes 
122 JMP 
123 CBYTDUNN LOX 
124 !NY 

position 
125 BEQ 

CBITLUPN ;no 
#$08 ;re-init bi~nter 

;point to next data 

CPAGEDUN ;must be done 
with page (slice) 

126 JMP CLUPNEG;do loop again 
127 CPAGEDUN DEC SLICE ;are we done yet? 
128 BEQ ALLDUN;done condensing 
129 

130 
131 
132 

133 
134 
135 
136 

INC 
page of data 

CLC 
LOA 
ADC 

set of bins 
STA 
LOY 
LOX 
JMP 

RAWHI ;No: point to next 

;prepare for addition 
BIN1LO ;get bin pointer 
#$08 ;point to next 

BIN1LO ;put pointer back 
#00 
#$08 ;init bit counter 
CLUPPOS ; 

137 WAVEDUN 
lngth (i 

LOA TEMPHI ;get wave's 
of samples) 

138 

139 
140 
141 

JSR 
correctbin 

LOA 
STA 
JMP 

142 NUCOUNT INC 
count 

143 
144 
145 OVER 

BEQ 
RTS 
DEC 

146 RTS 
147 ALLDUN RTS 
148 

BINSORT ;sort into 

#$00 
TEMPHI;reinit reslt cntr 
CBITLUP ;& do all again 
TEMPHI;update wavelength 

OVER ;must have rolled 

TEMPHI ;roll back to 255 

149 * (internal routine) 
150 * Enter w/ A holding num to be sorted 
151 * & Binllo/hi w/ base addr of thaBice 
152 
153 BINSORT STY TEMPLO;store y temporarily 
154 LOY #$00 ;cntr: points to 

155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 

bins 
CLC 
CMP 
BCC 
!NY 
CMP 
BCC 
!NY 
CMP 
BCC 
!NY 
CMP 
BCC 
!NY 
CMP 
BCC 
!NY 
CMP 
BCC 
!NY 
CMP 
BCC 

;prepare for compares 
#4 ;Is it less than 4? 
FOUNDBIN ;yes 

;point to next bin 
#5 ;is it 4? 
FOUNDBIN ;yes 

;point to next bin 
#6 ;is it 5? 
FOUNDBIN ;yes 

;point to next bin 
#8 ;is it 6 or 7? 
FOUNDdiN ;yes 

;point to next bin 
#10 ;is it 8 or 9? 
FOUNDBIN ;yes 

;point to next bin 
#12 ;is it 10 or 11 
FOUNDBIN ;yes 

;point to next bin 
#20 ;between 1~ 19? 
FOUNDBIN ;yes 

176 !NY ;must be> 20 
177 FOUNDBIN LOA (BIN1LO),Y;get corr. bin 
178 CLC ;get ready for addition 
179 ADC #1 ;inc bin's count 
180 BEQ BINROLL ;> 255? 
181 STA (BIN1LO),Y ;restore bin 
182 LOY TEMPLO ;restore y reg 
183 RTS 
184 BINROLL LOA 
185 

186 
187 
188 

result 

189 * FIND 

STA 

LOY 
RTS 

#$FF ;max=255 
(BIN1LO),Y ;store as 

TEMPLO ; restore y reg 

190 * Enter with data in recbuf, templates 
at locations in 



191 * page 68, highest word to check 
against in WORDNUM. 

192 * Result passed back in WORDNUM. 
Error (difference) 

193 * passed back in SCORELO, SCOREHI 
194 
195 FINDl 
196 

LOA 
STA 

lt$FF 
SCORELO ;seed the 

score counter with 
197 STA SCOREHI ;the highest 

value possible. 
198 FINDLUP JSR FINDIT ;wordnum 

contains highest word 
199 JSR COMPARE ;16 bit 

compare to find smallest 
200 DEC WORDNUM ;pt to nxt word 
201 LOA 
202 CMP 
203 BEQ 
204 JMP 
205 FOUNDIT LOA 
206 STA 

207 
208 

in wordnum 
RTS 

LOA 

WORDNUM ;get wordnum 
lt$FF ;done yet? 
FOUNDIT ;yes 
FINDLUP;no:try next word 
OUTBYTE ;get result word 
WORDNUM ;pass back 

lt$00 209 FINDIT 
210 STA WORDLO ;init word 

211 

212 

total, lo byte 
STA WORDHI 

total, hi byte 
STA TEMPLO 

lo byte 

;init word 

;init temp, 

213 STA TEMPHI;init temp, hi 
byte 

214 LOA 
215 STA 

word pntr hi 

lt$62 
RAWHI 

216 
217 

LOA lt$EO 
STA RAWLO 

word pntr lo 

;init unknown 

;init unknown 

218 JSR WOROAORS ;set pointers 

219 

220 

221 

to point in table 
LOA lt$00 

(starting w/ 0) 
STA SLICE 

counter 
LOY lt$FF 

bytes/word max.) 
222 LOX lt$08 

per slice 
223 FINDLUPl !NY 

;4 time slices 

;init slice byte 

; (count to 31 

;8 bytes of data 

;next byte 
224 CPY lt32 ;done with entire 

word yet? 
225 BEQ BIGDUN ;yes 
226 LOA (RAWLO),Y ;get a byte of 

data 
227 CMP (BINlLO) ,Y ;which is 

bigger? 

228 
229 

BCC 
SEC 

OTHERl ;binllo is bigger 
;rawlo=bigger: 

prep to subtract 
230 SBC (BINlLO),Y ;find diff 

(borrow never needed) 
231 DUNl JSR ADDl ;add diff to total 
232 
233 
234 

DEX 
BEQ 
JMP 
LOA 

;done w/ this slice yet? 

235 OTHERl 
236 SEC 
237 SBC 
238 JMP 
239 ADDl CLC 
240 ADC 
241 STA 
242 BCS 
243 RTS 
244 MOREl INC 
245 RTS 
246 FINDDUNl LOA 
247 
248 

CMP 
BEQ 

weight in ttl 

FINDDUNl ;yes 
FINDLUPl ;no-do again 
(BINlLO) ,Y;get data byte 
;prepare for subtraction 

(RAWLO),Y;find difference 
DUNl ;and do again 

;prepare for addition 
TEMPLO ;add to total 
TEMPLO 
MOREl 

TEMP HI 

SLICE 
lt$0 
NEWTTL 

;save result 
;we had a carry 

;account for carry 

;get slice number 
;is it slice itO? 
;yes: give full 

249 CMP lt$1 ;is it slice ltl 
;yes: give full 250 BEQ NEWTTL 

weight in ttl 
251 CLC ;no: divide by 2 

for 50% weight 
252 
253 

ROR TEMPHI 
ROR TEMPLO 

;roll hi byte 
; roll lo byte 

(carry rolls in) 
254 CMP lt$2 ;is is slice lt2 
255 BEQ NEWTTL ;yes 
256 CLC ;no: divide again 

for 25% weight 
257 
258 

ROR TEMPHI ; roll hi byte 
; roll lo byte ROR TEMPLO 

(carry rolls in) 
259 NEWTTL LOA TEMPLO ;get total 
260 
261 
262 

263 
264 

byte 

CLC 
AOC 
STA 

LOA 
ADC 

(carry adds) 
265 STA 
266 INC 
267 LOX 
268 LOA 
269 STA 
270 STA 
271 JMP 
272 BIGOUN RTS 

wordlo,hi 
273 
274 COMPARE LOA 

;prepare for ad 
WOROLO ;add to big total 
WOROLO ;save result, lo 

TEMPHI ;get hi byte 
WOROHI ;add hi bytes 

WORDHI;save result,Th¥te 
SLICE ;next slice 
lt$08 ;8 bytes per slice 
lt$00 
TEMPLO ;re-init temple 
TEMPHI ;re-init temphi 
FINOLUPl;& do all again! 

;diff between words in 

WORDHI ;get hi byte 



275 CMP SCOREHI ;lower than lowest 

276 

277 

so far? 
BCC 

lowest number 
BEQ 

check lo byte 

CHANGIT ;yes: found a new 

MAYBE ;if hi bytes =, 

278 JMP COMPO UN 
WORDLO 
SCORELO 

2 7 9 MAYBE LOA ;get lo byte 
;are we lower? 280 CMP 

281 

282 

BCC 
lowest number 

JMP 

CHANGIT ;yes - save new 

COMPDUN ;no so leave 
everything alone 

283 CHANGIT LDA WORDHI ;get wordhi 
284 
285 
286 
287 
288 

STA SCOREHI ;save it 
LOA WORDLO ;get wordlo 
STA SCORELO ;save it 
LDA WORDNUM ;get wordnum 
STA OUTBYTE ;save it in 

outbyte for later 
289 COMPDUN RTS 
290 
291 
292 * INITWRD (internal routine) 
293 * Enter with WORDNUM holding number of the 

32 byte 
294 *buffer to clear ($0-$FE). Must clear 

out buffers 
295 * before using the learn mode to store any 

data there. 
296 

297 INITWRD JSR WORDADRS ;set up pointer 
298 CLEAR LOY i31 ;each buffer is 32 

bytes long 
299 LOA 
300 LUP1 STA 

301 
302 
303 

buffer 
DEY 
BEQ 
JMP 

304 INITDUN STA 
location 

305 
306 

RTS 

307 WORDADRS LOA 

tOO 
(BIN1LO),Y ;zero out data 

INITDUN 
LUP1 

;next location 
;done yet? 
;no 

(BIN1LO),Y ;account for y=O 

i$67 
308 STA BIN1HI;set pointer for hi 

bank 
309 LOA 
310 ADRSLUP CMP 
311 BCC 
312 INC 
313 SEC 
314 SBC 
315 JMP 
316 CALC CLC 
317 ASL 
318 ASL 

ASL 
ASL 
ASL 

WORDNUM ;get word number 
i8 ;less than 8? 
CALC ;no 
BIN1HI ;next page needed 

;prepare for subtraction 
i$8 ;reduce by 8 
ADRSLUP 

;prepare for addition 
;multiply by 32 

319 
320 
321 
322 
323 

STA BIN1LO ;save in 0 page ptr 
RTS 

[i]~~,: ;~~]~i;~;~~:~;=~~1~~; ; : , ···•••••·•' ~~~~i~~~~~~~~r::;,,;•·•·••••••••• ·••••• •> 
~:;r;;~~:~!c~n:~wr::j,~~~i~~ e;;,rt:~;;;·d ~i~~i.:;;.~:~ •.....•••••.. 
[W~U, g~d qi~. actymJy fyi !~ work with! .· .. . ·. ·.·.· .. . · . .. ·.·· .·.·.· .· ··.·. ··· .. 

fYrt~:~h~~~~~~iFf!.~· ~;~d;~ 
< > {/q So"tdisk Publishing; I 

606 ')¥!~ 7ntr.tt4!1r.,tn Ul,line; ~~~~!~ . 



Illusions of Motion 
by Stephen P. Lepisto 
12907 N. Strathern 
North Hollywood, CA 91605 

Steve is afuU time Ilgs programmer who enjoys the 
rare status of .freelancer. One of his multitudinous 
projects includes FirePower GS. 

In my last article, I presented a program that moved 
two different images over a complex background 
without disturbing each other or the background. In 
addition, the images had areas of transparency 
which allowed the background to show through 
them as they moved. I also introduced the notion of 
shadowing to provide flicker-free animation. This 
time, I will introduce that last basic component of 

. computer animation: changing the image as it 
moves. 

I'm sure there are times when you have played a 
game on the computer in which you guided a walk
ing man or flaming ship through various perils. In 
the last two installments, I have presented the 
concepts needed for moving that man or ship across 
the screen. This month, I will show you how to make 
that man walk and that ship flame while they move 
(well, I won't actually show you the man or the ship 
but I will show you how to create a pulsating blue 
diamond, which is almost the same thing!). 

Movement in Motion 

Notice I use the phrase "walking man." In those sorts 
of games, a man doesn't really walk through the 
jungle (or castle or dungeon). Rather, a rectangular 
image with areas of transparency is being moved 
across a complex background that happens to re
semble a jungle (or castle or dungeon). What makes 
the man appear to walk is the way the image changes 
as it moves. Instead of plotting the same image over 
and over (like we did in the last installment), a whole 

. one at a time, with 
a little different from 

subtly-changing images 
rapid sequence gives the 

illusion of walking. Change the position where each 
image is plotted and you get a man walking across 
the screen. Just like in the movies. 

So, to make a pulsating diamond, all we really need 
to do is plot different images instead of the same one, 
as we move the diamond around. However, for the 
illusion to work, we need to make sure the changes 
in the images are orderly and that they occur in a 
orderly and timely fashion. So, we need to introduce 
the concept of time to our little program. After all, if 
all the different images of the walking man were 
shown too quickly, the man would appear to be 
running in place! If the images occurred too slowly, 
the man would look like he was skating across the 
jungle. We need to pause for just the right amount of 
time between the showing of each image of the se
quence to give the eye a chance to see that image on 
the background: this is why we need to introduce 
time to the program. 

Programming Time 

Time is relatively straightforward to add to a pro
gram. All it really amounts to is, a variable that 
changes at a regular rate. We then make sure the 
change in position and the change in the image occur 
in synchronization with that timing variable. For ex
ample, if we have a counter that is incremented once 
each time we execute the main loop of our program, 
and we cause the image being moved to be changed 
whenever the clock is incremented, the changing 
image would be in sync with the program. In prac-



tice, this approach is a little too simple because the 
image would change far too rapidly. Instead. we will 
change the image only after a certain number of 
clock ticks have passed. This will give us the proper 
delay in the changing image to see what is going on. 

The main characteristic of a time counter is that it 
needs to be constant: it needs to change at regular 
intervals. A time counter can be implemented in a 
variety of ways. with the most common being use of 
interrupts or a simple counter incremented once 
through the main loop. What method is used will 
depend on what you are trying to achieve: te inter
rupt method is very accurate when you need to 
synchronize motion and change to a time-dependent 
event such as music or a real-time clock. The loop 
counter is useful when you want to synchronize 
everything in the program to everything else (since 
everything will be executed once each time through 
the main loop, it doesn't really matter how long it 
takes to do any one thing since everything else will 
wait for that one task to finish). In our example, we 
will be using a form of the loop counter approach. 

Programming Change 

The other aspect of changing an image in an orderly 
fashion is some method of accessing each image of a 
sequence in a given order. If you didn't get the order 
right, it might appear, for example, that the man was 
walking backward even though he was moving for
wards. This is really bad for the eyes! So, we need a 
list of images and a variable that will act as an index 
into that list. That index will then be changed in sync 
with the timer. 

The index that controls which image of the sequence 
is shown is often called a frame counter, since each 
image of a sequence is generally called a frame (taken 
from the movie industry where each image of the film 
is called a frame) . This frame counter will be used to 
tell the program which frame to draw next. 

How To Do It 

For the timer in our program. we will be using a 
variant on the loop counter. Our timer will be a 
variable that is initialized to a specific value (called 
the Master Delay Value) and then decremented once 
each time through the main loop. When this counter 

reaches zero, we increment the frame counter which 
will cause the next image to be shown. We also reset 
the timer so it will count down to the next image 
change. Step by step. the process looks like this: 

1) Initialize the time counter to the Master Delay 
Value. 

2) Initialize the frame counter to 0 (start with first 
image in sequence). 

3) Show the proper image in the sequence as ref
erenced by the frame counter. 

4) Decrement the timer by l. 

5) If the timer has reached 0, then 

6) Reset the timer to the Master Delay Value. 

7) Increment the frame counter by l. 

8) If the frame counter has gone past the last 
frame in the sequence, then reset the frame 
counter to 0. 

9) Repeat steps 3 through 8. 

Notice that we continue to display the image each 
time through the loop, even though the image itself 
isn't changed each time through the loop. This 
allows each image of the sequence to persist long 
enough for the eye to see it. This also allows us move 
the image each time the main loop is processed. 

(As an aside here, note that it is possible to synchro
nize the motion to the timer in the same way the 
frame counter is synchronized if a slower motion is 
needed (in practice, moving once every time the main 
loop is executed is often too fast] . This is a different 
approach to velocity, in which we control speed by 
controlling when the change in position occurs as 
opposed to controlling the change in position itself.) 

If we were to use an outside timer such as an 
interrupt from an actual clock (called Clock). then we 
would get rid of step 4 in the above algorithm and 
replace steps l, 5, and 6 with something like this: 

1) Initialize our timer to Clock plus Master Delay 



Value. 

5) If the Clock equals or exceeds our timer then 

6) Reset our timer to Clock plus Master Delay 
Value. 

The only change here is we usually don't want to 
reset the outside interrupt Clock to a Master Delay 
Value so we need to create a target value in our timer 
and wait for the interrupt Clock to catch up to that 
target value. When the Clock has reached or passed 
our target timer. we reset our counter to some future 
time. 

Making It All Work 

Okay. to bring it all together. we need a timer. a frame 
counter. and a sequence of images. This brings us to 
the changes to the program (which was built up over 
the last two installments): 

1) Make the changes in listing 1. The lines to be 
added or changed are marked; the other lines are 
there to position the changes correctly. Note that 
these changes assume you have the previous two 
installments (c.f. March and May, 1990). 

2) Add the code and data as shown in listing 2 . 

3) Replace the draw images routine with the new 
one in listing 3 . -

4) Finally. add the new images in listing 4. Note that 
these new images replace the green square from the 
previous program. 

Don't forget to make a new macro file for the finished 
code. 

Now. when you run this program. you should see two 
pulsating blue diamonds racing around the screen. 
one moving slower than the other. 

In Conclusion 

With this installment. you now have the basics of 
animation on the Ilgs. You can move an image across 

a blank screen. You can move that image across a 
complex picture. You can even cause that image to 
change while it's moving. You can now create your 
own Illusions of Motion. 

Things to Experiment With 

1) In the default values Oust after the init_images 
routine). the def_frametime array is the number of 
clock ticks between each frame of animation. Make 
this number smaller to have the diamond pulse more 
quickly; increase it for a slower pulse. 

2) Look at the image sequence defined in 
image_O_list. Notice how the first two images are 
reused at the end of the sequence to make the 
pulsing look like its growing then shrinking (when 
the sequence is played over and over. the diamond 
grows and shrinks and grows in a regular rhythm). 
Play around with the order here to see the effects of 
that order. For example. delete or comment out the 
last two image references to see a different pulse 
effect. 

3) To get a taste of some of the complexities that can 
arise with this type of animation. try to add a second 
image to this program. One of the headaches that 
often occurs in any program that uses complex 
animation is the organization of the image data and 
how to most efficiently access that data. Most of the 
changes needed to support a second sequence will 
take place in draw _images. lnit_images will need to 
be changed as well. A hint: concentrate on those 
areas which reference image_O_list and figure out a 
way to reference multiple sequences. 

4) I mentioned last time that there was a way to 
properly achieve velocities above two and that the 
changes needed occurred in only one routine. That 
routine is show_images. Basically. the limit of two on 
the velocity has to do with the two pixel border 
around the image. When the image is shadowed to 
the main screen. the border will erase the previous 
image at the same time as the new image is being 
shown (because that is the size of the rectangle being 
shadowed). If the velocity is greater than two, 
though. the shadowing rectangle is no longer large 
enough to completely erase the previous image. 
If you were to enlarge the area being shadowed so it 



took into account the velocity, the previous image 
would be erased no matter how far the new image 
was displaced by that velocity. However, this can 
slow things down as the shadowed area gets larger 
when the velocity gets larger. In addition, you have 
to watch out when an image gets close to the edge of 
the screen since you don't necessarily want to 
shadow memory that isn't visible. 

This problem of shadowing moving images is one 
good reason why many programs chose to shadow 
the entire display area once after repositioning all 
the things that are moving and/ or changing. Since 
shadowing such a large area takes no small amount 
oftime, the size of the display area is made just small 
enough to minimize that delay in shadowing. This 
explains why many arcade-style games on the IIgs 
have such small play areas. 

Listing 1: 

In the following fragments. add the lines marked 
with a + at the end. Some of the routines have been 
truncated. This is indicated by" ..... ~. 

def_height 
def buffer 
def frametime 

width image_ 
image_bytewidth 
buffer adrs 
frame count 
frames in seq - -
frame timer 

Listing 2: 

da 15,15 
a drl buffer1,buffer2 
da 6,6 

ds MAXIMAGES*2 
ds MAXIMAGES* 2 
ds MAXIMAGES*4 
ds MAXIMAGES*2 
ds MAXIMAGES*2 
ds MAXIMAGES*2 

Add this routine and data list to the code. I suggest 
you put the code just before the draw _images routine 
and the data list just before the images themselves. 

* Update the time and frame c ounters for all 
* sequences . 

update_counters 
stz 

:1 lda 
image_index 
image_index 

+ 

+ 
+ 
+ 

asl 
tax 
dec 
bne 

frame_timer , x 
:3 

;decrement timer 
Animate 

* When timer 

lda 
sta 

0, reset to Master Delay Value 

def_frametime,x 
frame_timer,x 

jsr 
jsr 
jsr 
jsr 
jsr 
lda 
jsr 
jsr 
bee 
rts 

draw_images 
show_images 
erase_images 
move_images 
update_counters 
u 
pause_a_moment 
read_key 

+ * and increment the frame counter. 

:1 

init_images 
ldx #0 

:1 
stz frame count,x 
lda #image_O_listx-image_O_list / 4 
sta frames_in_seq,x 
lda def_frametime,x 
sta frame_timer,x 
lda def_velx,x 

+ 
+ 
+ 
+ 
+ 

xvelocity,x;horizontal velocity 

lda frame_count,x 

* When frame index reaches end of sequence, 
* reset to beginning of sequence. 

cmp frames in _seq,x -
bee :2 
lda #0 

:2 sta frame count,x -
:3 inc image_ index 

lda image_ index 
cmp number of _images 
bee :1 
rts 

sta 
def_bytewidth da 8,8 * Sequence list f o r the pulsating diamond. 



cmp 
bee 

number_of_images 
:1 image_O_list 

adrl 
adrl 
adrl 

basic_image_O,basic_image_1 rts 

image_O_listx 

mask 0 list 
adrl 
adrl 
adrl 

Listing 3: 

basic_image_2 
basic_image_1,basic_image_O 

basic_mask_O,basic_mask_1 
basic mask 2 
basic_mask_1,basic_mask_O 

Replace the draw _images routine with this new one. 
Since there were a number of changes to this rou
tine, it is simpler to reenter it. 

draw_images 
stz 

:1 lda 
asl 
tax 
asl 
tay 
lda 
sta 
lda 
sta 
lda 
sta 
lda 
sta 
lda 
sta 
lda 
sta 
lda 
asl 
asl 
tay 
lda 
sta 
lda 
sta 
lda 
sta 
lda 
sta 
jsr 
jsr 
inc 
lda 

image_index 
image_ index 

image_bytewidth,x 
plot_bytewidth 
image_height,x 
plot_height 
xposition,x 
plot_xpos 
yposition,x 
plot_ypos 
buffer_adrs,y 
buffer_ptr 
buffer_adrs+2,y 
buffer_ptr+2 
frame_count,x 

image_O_list,y 
image_ptr 
image_O_list+2,y 
image_ptr+2 
mask_O_list,y 
mask_ptr 
mask_O_list+2,y 
mask_ ptr+2 
buffer_image 
plot_image 
image_index 
image_index 

Listing 4: 

Replace basic image 1 and basic mask 1 with the 
following additions. 

basic_image_1 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000440000000 
hex 0000004444000000 
hex 0000044444400000 
hex 0000444444440000 
hex 0000044444400000 
hex 0000004444000000 
hex 0000000440000000 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 

hex 0000000000000000 

basic mask 1 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 
hex OOOOOOOFFOOOOOOO 
hex OOOOOOFFFFOOOOOO 
hex OOOOOFFFFFFOOOOO 
hex OOOOFFFFFFFFOOOO 
hex OOOOOFFFFFFOOOOO 
hex OOOOOOFFFFOOOOOO 
hex OOOOOOOFFOOOOOOO 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 

basic_image_ 2 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000000000000 
hex 0000000440000000 
hex 0000004444000000 
hex 0000000440000000 
hex 0000000000000000 



hex 0000000000000000 hex 0000000000000000 
hex 0000000000000000 hex 0000000000000000 
hex 0000000000000000 hex OOOOOOOFFOOOOOOO 
hex 0000000000000000 hex OOOOOOFFFFOOOOOO 
hex 0000000000000000 hex OOOOOOOFFOOOOOOO 

hex 0000000000000000 
basic mask 2 hex 0000000000000000 

hex 0000000000000000 hex 0000000000000000 
hex 0000000000000000 hex 0000000000000000 
hex 0000000000000000 hex 0000000000000000 
hex 0000000000000000 hex 0000000000000000 

One of the Living Legends Returns ... and GOSUBs. and ... 

MD-BASIC • • A Review 
Reviewed by Jay Jennings 

Editor: It's not that we don't ever want to run reviews, 
it's just that we only want to discuss extremely signifi
cant new heavy-duty hacker tools (we know our 
audience!). Applesoft itself is old technology, of 
course, but one of the reasons that MD-BASIC has so 
much potential is the 

ment system for Applesoft. Though MD-BASIC is a 
16-bit compiler that runs on the Apple Ilgs, it gener
ates 8-bit Applesoft BASIC programs as its object 
files. The usual restrictions of Applesoft (two-letter 
variable names, line numbers instead of labels, and 

rudimentary loop
principle of widest 
audience - Applesoft 
is built-in to every II. 
Publishers like 
Softdisk, for ex
ample, want to put 
as much on their 
disks as possible 
every month. Apple-

The Jennings Pizza Rating for MD-BASIC: 
ing structures) turn 
programming in BA
SIC into a giant 
headache. MD
BASIC changes that 
by eliminating the 
structure problems 
of Applesoft. With 

4.5 (five pizzas possible) 

soft programs are 
good fodder for them because 16K of each one lives in 
ROM. 

Jay Jennings is a full time Apple II freelance program
mer (another of a rare breed). He is aformer staff pro
grammer for A2-Central and still does projects for 
them For example, Jay is the seminar coordinator for 
the upcoming developer's conference in Kansas City. 

What IS MD-BASIC, Anyway? 

MD-BASIC can best be described as a cross-develop-

MD-BASIC, you 
write your programs 

with any text editor and then compile the source file 
into a runnable Applesoft program, a plain BAS file 
that you can RUN. LIST, or even compile further with 
the Beagle Compiler. 

Sample MD-BASIC Program 

Here's a short sample to give you a taste of the flavor 
of MD-BASIC code: 

' suck in some header defines from the 



disk 

#include <fileio.h> 

' define some macros 

#define EightyColumns print '"'dPR#3" : 
print 
#define Locate(x,y) htab x : vtab y 

'program code starts here 

EightyColumns 
home 
Locate (35,12) 
print "Hey, dOOd!" 

' g o to 80 cols 
'and clear the scre en 

now d o a loopi ng thing 

X = 0 
repeat 

X = X + 1 
print " " g" 

until x = 3 

'initiali ze this va r iable 

'beep the speaker!!! 

' and f inally, some file I /O 

gosub IO Te st 
end 

' the s ubroutine that doe s the file stuf f 

IO Test: 
fOpen ("JayFile" ) 
fWrite ("JayFile") 

print "This is in my file! ! !" 
f Cl ose ("JayFi l e") 

r eturn 

Compiling the above program gets you the following 
(Editor: The control-D is invisibly embedded within 
the quote marks- a space saving feature): 

1 PRINT " PR#3" : PRI NT : HOME : HTAB 35 : 
VTAB 12: PRINT "Hey, dOOd!":A = 0 

2 A= A+ 1 : PRINT "": IF NOT (A= 3) 

THEN 2 
3 GOSUB 4: END 
4 PRINT "open";"JayFile": PRINT 

"write";"JayFile": PRINT "This is in my 
file!!!": PRINT "close";"JayFile": RETURN 

What It Does When It Does What It Does 

Let's take a look at a few of the nifty source-level 
features of MD-BASIC. First, you can include com
ments in your programs in two ways: with the usual 
REM, or with an apostrophe. REM statements are 
included in the final compiled program (useful for 
copyright notices and so forth); comment statements 
that begin with an apostrophe are stripped out 
during compilation. You can use as many comment 
statements as you like without increasing the size of 
the resulting Applesoft file. 

The first real line past the comment is a compiler 
directive that tells MD-BASIC to insert the file 
FILEIO.H into the source code. FILEIO.H is full of 
definitions that are used for, naturally enough, file I/ 
0. It's essentially a set of macros that saves you from 
having to type PRINT CHR$(4) for each disk com
mand. The fOpen, !Write, and fClose calls used near 
the end of the sample program are defined in this file . 
(FILEIO.H, along with a number of other useful 
header files, is included with MD-BASIC.) 

In the next section of our program, we define a couple 
of macros. (These are the kind of statements that 
FILEIO.H and the other header files contain.) We 
equate the symbol EightyColumns with the code 
segment PRINT ""DPR#3". We can then use Eighty
Columns as a command in our program, and MD
BASIC will convert it to PRINT ""DPR#3" during 
compilation. The caret(") is used to denote a control 
character, just as you'd guess. 

The REPEAT/UNTIL loop in the sample program 
could just as easily have been implemented with a 
FOR/NEXT loop, but there are some cases where 
REPEAT /UNTIL really comes in handy. MD-BASIC 
also includes WHILE/WEND, which differs from 
REPEAT /UNTIL in that the condition is tested at the 
top of the loop rather than at the end. 

MD-BASIC doesn't use line numbers. Instead, you 
define labels for subroutines and call them by name. 



You can name your file printing subroutine PrintFile 
and call it with GOSUB PrintFile, which is a lot easier 
on the gray matter than GOSUB 1027 or whatever. 
You don't have to worry about the line numbers 
changing when you add and delete lines, either. 

Further Goodies 

MD-BASIC also includes a decompiler, which allows 
you to create an MD-BASIC source file from an 
existing Applesoft file. Tweaking the resulting 
source file to take advantage ofMD-BASIC'sfeatures 
is a good idea, but even simply decompiling and 
recompiling a program produces a smaller Applesoft 
file that runs faster. This is because the Applesoft 
code that MD-BASIC produces is highly optimized. A 
program I wrote about three years ago is 7987 bytes 
long as I originally wrote it; after simply decompiling 
and recompiling, the program was 6952 bytes long. 
MD-BASIC saved me over 1K, all without any work 
to speak of. 

Early versions of MD-BASIC ran undertheAPW and 
ORCA/M shells, but the current version can be run 
standalone as well. A confusing, complex, and very 
powerful text editor (microEmacs) is included, but 
you can use whatever editor you like to edit your 
programs. Also included is AmperWorks, an amper
sand package that gives Applesoft some much
needed capabilities such as copying files. listing text 
files, and searching and sorting arrays. The 30 
commands in AmperWorks are worth the price of 
MD-BASIC all by themselves; with MD-BASIC it's an 

Insecticide 
We discovered yet another piece of code stuck under
neath our chair that should have been included in 
Matt Neuberg's Sweet 16 article in our May issue. As 
many of you noticed. the relocation routine refer
enced in the article and JSR'd to by the main 
program was conspicous by its absence. Here 'tis, 
with proper line numbers: 

354 *--------------
355 
356 * OMIT what follows if you don't want pg 3 
reloc 

incredible deal and adds considerable power to your 
programming. (MD-BASIC includes header files to 
integrate AmperWorks seamlessly into the lan
guage.) 

The documentation is a clear and concise 120-page 
bound manual that includes sections on the com
piler. decompiler, advanced features , and Amper
Works. I'd ask for more source code examples, but 
I'd ask the same of any development system no 
matter how many examples were included. An 
included installation program will install the com
piler, decompiler. and header files as a standalone 
application or as utilities in the APW and ORCA/M 
shells. 

MD-BASIC has many other great features, but 
they're too numerous to detail in this review. I 
suggest you get ahold of the MD-BASIC demo and 
put it through its paces (it'll be on this month's 8/16 
disk). You can also get it from most online services. 
and from Morgan Davis' BBS, Pro-Sol, at (619) 680-
5379. 

To sum it all up, MD-BASIC revives tired old Apple
soft and makes it once again a viable development 
language for the Apple II. It's a great value at $49.95. 

357 
358 
359 
360 
361 

Morgan Davis Group 
10079 Nuerto Lane 
Rancho San Diego, CA 92078-1736 
(619) 670-0563 

ORG 

RELOCATE LOX RELENO-SW16 
RELONE LOA $900-l,X ;where SW16 is b4 

reloc 
362 STA $300-l,X ;where we want it t o 
go 
363 OEX 
364 BNE RELONE 
365 RTS ;Sweet16 is now ready for 
use 



SouthPaw : Changing Your 
Orientation 
by Jason Blochowiak 

Jason is heavily into !NITs, having written BreakCur
sor (turns your cursor to an 'X' when your machine 
crashes). and AnimatedWatch (which moves the 
hands of the watch cursor). He is currently working 
on the "Great American Software Project" and will 
probably retire soon thereafter. 

SouthPaw is a short permanent initialization file 
(PIF) that changes the orientation ofthe arrow mouse 
cursor to something more natural for left-handed 
people. I'm not left-handed, nor is the person who 
suggested the idea to me (Evan RonAussenberg), but 
it seemed like it'd be an interesting hack. The pro
gram is a good introduction to the rather obscure art 
of tool-vector patching, as well as changing the 
cursor. Additionally, the source code is presented in 
both APW and MPW IIgs formats, so that you may 
compare the two. 

The program is broken up into one code segment, 
main, and one data segment, Cursors. main has two 
parts: the first part tool patch installation code, 
which gets executed when SouthPaw is loaded at 
boot time and installs the tool vector monitor. This 
code (the second part of main) watches all tool calls 
made and gets control of the system when _InitCur
sor is called. 

The Installation 

One makes tool calls on the Apple IIgs by loading the 
X register with the tool call number, and performing 
a JSL to either $El/OOOO or $El/0004. Those 
vectors point to a dispatcher within the tool locator, 
which finds the appropriate code and transfers 
control to it. Because of Apple's prudent decision to 
hold the entry point to the tool locator in a vector, it's 
possible to change what code is executed when a tool 
call is made. 

Actually making the vector point to our code is 

relatively simple. (See the label InstallVectors.) First, 
the previous contents of each vector is saved. Next, 
we copy a jump to our code into the vector (at the 
label InstallOurs). This is done for each of the two 
vectors. Note that interrupts are temporarily dis
abled by the php/sei/plp instructions in order to 
prevent code running during the interrupt to call a 
half-formed address. (This would happen if an inter
rupt occurred after the sta >ToolVec, but before the 
sta >Too1Vec+2. This is highly unlikely, but 
Murphy's law dictates that we play it very safe when 
dealing with interrupts.) 

The Tool Vector Monitor 

Upon entry to the primary vector monitor (the code 
that gets called when $El/OOOO gets called) at 
MyToolEnt, the carry flag is cleared, and the code 
drops into ToolEnt. When the secondary vector 
monitor gets called (when $El/0004 is called) at 
MyToolEnt 1, the carry flag is set, and the code 
branches to ToolEnt. At ToolEnt, the P register is 
pushed on the stack, so it can be determined later 
(from the carry flag) which of the saved vectors to use. 

''Note that the method of tail
patching used here works only if 
the call we're patching has no 
parameters on the stack." 

The X register is then compared against the one tool 
call number that we care about, _InitCursor 
($CA04) . If it doesn't match, control goes to 
VecNorm, which restores the P register. At VecNorm, 
if the carry flag is set. control goes to the location 



where the old value of the alternate vector is stored: 
conversely, if carry is clear, the code drops into the 
old value of the primary vector. Either way, the code 
that was pointed to before we did our patch gets 
executed and our routine is finished. 

If X does hold $CA04, indicating that an _InitCursor 
call was made, we pop P off of the stack and JSL to 
VecCall, which checks the carry flag and calls the 
code pointed to by the values held previously by the 
tool vectors. The result of this is that the original 
_InitCursor code is executed, and then SouthPaw 
regains control. (This technique, of getting control of 
a tool call after it has executed, is know as back
patching or tail-patching. Note that the method of 
tail-patching used here works only if the call we're 
patching has no parameters on the stack-if _In
itCursor went looking for parameters, they'd be in 
the wrong place, and the call would, fail miserably.) 

When the old code returns to us, we do our business 
(detailed below in "The Hack"), and then execute an 
RfL. Because another tool call is made right before 
returning, the carry flag will be set appropriately-in 
this case, always clear. (In other cases, we'd have to 
set the flag ourselves.) 

You may have been taken aback at making another 
tool call within the tool vector monitor. since we've 
patched the tool dispatcher vector! This is called, 
simply enough, re-entrance. Code that can handle 
being re-entered is called (surprise) re-entrant. The 
monitor must be re-entrant: if it weren't. tool calls 
made during an interrupt would cause the system to 
fail, as might tool calls made from within another 
tool. 

One simple way of avoiding problems with re-entrant 
code is by using the stack instead of address-based 
variables. For example, instead of setting the carry 
flag and then saving it on the stack to remember if the 
primary or alternate tool vector got called. a value 
could be stored in a variable. However, if an interrupt 
came in after storing the value and one of the 
interrupt routines made a tool call, it would cause a 
different value to be stored in that variable. The 
interrupted tool vector monitor would then call the 
incorrect tool locator code, which would be a Bad 
Thing. 

The Hack 

After the monitor determines that _InitCursor has 
been called, and after allowing the normal code to be 
executed, it's time to do the work. First, a call is made 
to _GetMasterSCB and the result is pulled off the 
stack into the accumulator. Then X andY are loaded 
with a pointer to the 640 mode cursor. Next. the 
accumulator is ANDed with mode640, to determine 
if QuickDraw is in 640 mode. If it is, the code 
branches to Is640: if it isn't. X andY are loaded with 
a pointer to the 320 mode cursor. 

The Northeast arrow for lefties 

Now, in either case, the X and Y registers hold a 
pointer to the new cursor for the current screen 
mode, so they're pushed on the stack as input for 
_SetCursor. _SetCursor is called and the cursor is 
set the new image. 

The Translation 

SouthPaw was originally written using the APW 
assembler on the IIgs. Since writing it, I purchased 
a Macintosh IIci to make writing programs for the 
IIgs easier. I now use the Macintosh Programmer's 
Workshop (MPW) IIgs cross-development tools as my 
development platform. If you're serious about pro
gramming the IIgs, and you can afford it (which is not 
a minor consideration). the MPW IIgs tools are some
thing that you should look into. For this article, I 
thought that it would be interesting to present the 
source in both formats, so I converted the APW 
source to MPW IIgs source and it appears in listing 
two. 
The conversion was done in four stages. First, Apple 
File Exchange was used to get the source file into the 



Mac's file format (HFS). AsmCvtiigs. an MPW tool 
that came with the assembler, was run to get the 
source into something thatAsmllgs would even start 
to look at. Some work was done with the editor and 
the shell to convert all those nasty spaces into tabs. 
and to make a few other minor cosmetic adjust
ments. Then I did a teeny bit of programming to make 
my life easier - I added a segment at the beginning 
which does a brl to branch around the data segment. 
This allows me to escape from the drudgery of declar
ing forward references. (More on this below.) 

The specific differences between the files follow: one 
is named SP.S. I used ".S" as a suffix with APW. The 
Macintosh file is named sp.aii, since ".ail" is an 
enforced suffix with the MPW Ilgs tools. 

The keep directive is missing from sp.aii. as it's 
unnecessary. Additionally, instead of using mcopy 
with a pre-generated macro file. I directly "include" 
M16.QuickDraw and M16.Util into sp.aii. I also use 
"include" for the tool equates in sp.aii, but in SP.S, 
I use "copy" to import the tool equates. 

The equates defined at the start of each file are 
similar. Though APW uses gequ and MPW Ilgs uses 
equ, in this case. both assemblers treat them as the 
same. 

You may notice that all of the code in main is the 
same. This isn't always the case, as there are some 
differences in syntax between the two environments. 
For example, MPW Ilgs uses "val << bits" for a left 
shift and "val>> bits" for a right shift in expressions. 
while APW uses "vall bits" to shift left and "vall-bits" 
to shift right. 

The data inside Cursors is the same. but the decla
ration is a bit different. In APW, you use the opcode 
field for the operation. and the operand field for the 
data format and size (for example, de i2'3,5' states 
"define a couple of constant integers that are two 
bytes each [word-sized): 3 and 5"). In MPW Ilgs. you 
use the opcode field for the operation and the size of 
the individual operands (the code above would 
translate to dc.w 3,5, saying "define a couple of 
constant words. 3 and 5"). The MPW Ilgs constant 
declarations dc.b x (define byte x). dc.w x (define 
word x). and dc.l x (define longword x) correspond to 
APW's de il'x' (define a constant that's one byte long), 
de i2'x' (define a two byte constant [word-sized]). and 

de i4'x' (define afourbyte constant [longword-sized]). 
respectively. 

Now, for a moment. let's look back at the routine at 
the label "skip". The MPW Ilgs assembler requires 
that you declare all forward references. Rather than 
bother with declaring all of the references, I declare 
main, which I consistently use as an entry point, and 
then create a code segment which merely branches 
to main. This lets me put all of the code after all ofthe 
data. eliminating the need to individually declare 
any forward data references. 

Although the MPW Ilgs environment is significantly 
more powerful than APW, it's not always faster. I 
timed a full rebuild using both APW and MPW Ilgs. 

On my TransWarped Ilgs with two megabytes of 
memory. I used the APW assembler and ZapLink 
with all files on :RAM5, running under System 
Software 5.0.2, it took 7 seconds for the first and the 
second full builds (with one immediately following 
the other) . 

I used vl.O of the MPW Ilgs assembler. and the 
version of Linkiigs that came with v 1. 1 b of the MPW 
Ilgs tools on my Mac (with five megabytes of mem
ory). The development system was on one SyQuest 
45Mb removable hard drive. and the source and 
object code were on a second SyQuest drive. I used 
System Software 6.0.4 and MultiFinder 6.1 b was 
active. but only the Finder was running in the 
background. It took 25 seconds for MPW IIgs to build 
the entire program the first time, and 11 seconds the 
second time. 

There are a few important factors to consider while 
looking at these times. The first of these is the fact 
that the APW version used a macro file generated 
with MacGen, whereas the MPW version just in
cluded the appropriate macro files, wholesale. Addi
tionally, APW got to do its job on a RAM disk. Finally, 
and probably most importantly. the MPW Ilgs tools 
don't take much longer on larger files. As an extreme 
example of the difference in speed. Scott Lindsey, 
one ofthe programmers at Claris who has worked on 
AppleWorks GS, claims that doing a full rebuild of 
AWgs takes a number of hours on a Mac II, but it took 
a couple of days (days!) to rebuild when the AWgs 
team was still using APW. 



The Rambling 

As should be obvious, you could easily change the 
cursors that I used to something else-whatever you 
want. When creating the cursors, I usually create the 
one for 320 mode first because it's easier, due to the 
fact that each pixel takes up one hexadecimal digit. 
I then convert it to 640 mode by turning each $00 in 
the image into a $0, each $Of into a $3, each $f0 into 
a $c. and each $ff into a $f. (Note that this method 
won't work if you're working with a color cursor.) 

You could also fix a small problem with SouthPaw: if 
a program were to do a _SetCursorwith a cursor that 
was identical to the cursor set by _InitCursor. South
Paw wouldn't be able to tell and the user would see 
the right-handed cursor. To get around this, you 
could intercept _SetCursor, and compare the image 
to the standard arrow cursor. If it matched, you 
could replace the address on the sta<;k with a pointer 
to the appropriate left-handed cursor. 

Listing one: APW source code 

SP.S 
"SouthPaw• vl.O 
an InitCursor() hack to make arrow 
better for lefties 

InstallVectors anop 
php 
phb 
phk 
plb 
long 
sei 

lda >ToolVec 
sta VecSave 
lda >Too1Vec+2 
sta VecSave+2 

lda >ToolVecl 
sta VecSavel 
lda >Too1Vecl+2 
sta VecSavel+2 

InstallOurs anop 
lda MyTooll 
sta >ToolVecl 
lda MyTooll+2 
sta >Too1Vecl+2 

lda 
sta 
lda 

MyTool 
>ToolVec 
MyTool+2 

sta >Too1Vec+2 

plb 
plp 
lda 
clc 
rtl 

#0 

Copyright (c) 1990 by Jason Blochowiak MyTool jmp 
and Ariel Publishing. Some rights MyTooll jmp 
reserved. 

>MyToolEnt 
>MyToolEntl 

** APW Assembler ** 

keep SP ;OBJ file = SP 
case on 
mcopy SP.Mac 

;case sensitive 
;get macro file 

copy 2/Ainclude/El6.QuickDraw ;& equs 

; Tool calls we have to watch for 
InitCursor gequ $ca04 

; Tool Vectors to intercept 
ToolVec gequ $el0000 
ToolVecl gequ $el0004 

main start 
using Cursors 

;start of segment 
;with this as data 

MyToolEntl anop 
sec 
bra ToolEnt 

MyToolEnt anop 
clc 

ToolEnt anop 
php 
cpx 
bne 

plp 
jsl 

#InitCursor 
VecNo rm 

VecCall 

PushWord #0 
GetMasterSCB 

pla 

ldx 
ldy 

#Arrow640 
#"Arrow640 

; make sure that 
interrupts 
don't kill us! 

;get main 
tool vector 

;get alternate 
tool vector 

;install my alt. 
tool vector 

;instal l my main 
tool vector 

;copied to 
tool vectors 

;is this our call? 
no ... 

yes! 

;space 



and imode640 
bne Is640 

ldx iArrow320 
ldy i"Arrow320 

Is640 anop 
phy 
phx 
Set Cursor 

rtl 

Vee Norm anop 
plp 

VecCall anop 
bcs VecSave1 

Vee Save ds 4 
VecSave1 ds 4 

Dolt anop 
bra VecNorm 

end ; end of 

Cursors data ; start of 

Arrow320 de i'11,4 1 

de h'OOOOOOOOOOOO 0000 1 

de h'OOOOOOOOOOfO 0000 1 

de h'OOOOOOOOOffO 0000 1 

de h'OOOOOOOOfffO 0000 1 

de h'OOOOOOOffffO 0000 1 

de h' OOOOOOfffffO 0000 1 

de h' OOOOOffffffO 0000 1 

de h' OOOOfffffffO 0000 1 

de h'OOOOOOffOffO 0000 1 

de h'OOOOOffOOOOO 0000 1 

de h'OOOOOOOOOOOO 0000 1 

de h'OOOOOOOOOOff 0000 1 

de h'OOOOOOOOOfff 0000 1 

de h'OOOOOOOOffff 0000 1 

de h'OOOOOOOfffff 0000 1 

de h'OOOOOOffffff 0000 1 

de h' OOOOOfffffff 0000 1 

de h' OOOOffffffff 0000 1 

de h' OOOfffffffff 0000 1 

de h'OOOOffffffff 0000 1 

de h'OOOOffffOfff 0000 1 

de h'OOOOff£00000 0000 1 

de i' 1, 10 I 

Arrow640 de i' 11' 3 I 

de h'OOOOOOOO 0000 1 

de h'OOOOOcOO 0000 1 

main 

data seg. 

de h'00003c00 0000 1 

de h'OOOOfcOO 0000 1 

de h'0003fc00 0000 1 

de h'OOOffcOO 0000 1 

de h'003ffc00 0000 1 

de h'OOfffcOO 0000 1 

de h'000f3c00 0000 1 

de h'003c0000 0000 1 

de h'OOOOOOOO 0000 1 

de h'OOOOOfOO 0000 1 

de h'00003f00 0000 1 

de h'OOOOffOO 0000 1 

de h'0003ff00 0000 1 

de h' OOOfffOO 0000 1 

de h'003fff00 0000 1 

de h' OOffffOO 0000 1 

de h' 03ffff00 0000 1 

de h' OOffffOO 0000 1 

de h' 00ff3f00 0000 1 

de h'OOfcOOOO 0000 1 

de i' 1, 10 I 

end ;end of Cursors 

Listing two: MPW IIgs source code 

case 

Macros 

sp.aii 
"SouthPaw" v1.0 
an InitCursor() hack to make arrow 
better for lefties 

Copyright (c) 1990 by Jason Blochowiak 
and Ariel Publishing. Some rights 
reserved. 

** MPW IIgs Assembler ** 

on ;case sensitive 

include 'Ml6.QuickDraw' ;grab macro files 
include 'Ml6.Util' 

Equates 
include 'El6.QuickDraw' ;and equates file 

Tool calls we have to watch for 
InitCursor equ $ca04 

; Tool Vectors to intercept 



ToolVec equ $e10000 
Too1Vec1 equ $e10004 

entry main:CODE;a forward CODE reference 

skip proc ;start of procedure 

brl main 

endp ;end of procedure 
Cursors record ;start of record (data) 

Arrow320 
dc.w 11, 4 
dc.b $00,$00,$00,$00,$00,$00,$00,$00 
d c .b $00,$00,$00,$00 , $00,$f0,$00,$00 
dc.b $00,$00,$00,$00,$0f,$f0,$00,$00 
dc.b $00,$00,$00,$00,$ff,$f0,$00,$00 
dc.b $00,$00,$00,$0f,$ff,$f0,$00,$00 
d c .b $00,$00,$00,$ff,$ff,$f0,$00,$00 
d c.b $00,$00,$0f,$ff,$ff,$f0,$00,$00 
d c .b $00,$00,$ff,$ff,$ff~$f0,$00,$00 

d c .b $00,$00,$00,$ff,$0f,$f0,$00 , $00 
dc.b $00,$00,$0f ,$f0,$00,$00,$00,$00 
dc.b $00,$00,$00,$00,$00,$00,$00,$00 

dc.b $00,$00,$00,$00,$00,$ff,$00,$00 
d c .b $00,$00,$00,$00,$0f,$ff,$00,$00 
dc.b $00,$00,$00,$00,$ff,$ff,$00,$00 
d c. b $00,$00,$00,$0f,$ff,$ff,$00,$00 
dc.b $00,$00,$00,$ff,$ff,$ff,$00,$00 
dc.b $00,$00,$0f,$ff,$ff,$ff,$00,$00 
dc.b $00,$00,$ff,$ff,$ff,$ff,$00,$00 
dc.b $00,$0f,$ff,$ff,$ff,$ff,$00,$00 
dc.b $00,$00,$ff,$ff,$ff,$ff,$00,$00 
dc.b $00,$00,$ff,$ff,$0f,$ff,$00,$00 
dc.b $00,$00,$ff,$f0,$00,$00,$00,$00 

d c .w 1,10 

Arrow640 
dc.w 11,3 
dc.b $00,$00,$00,$00,$00,$00 
dc.b $00,$00,$0c,$00,$00,$00 
dc.b $00,$00,$3c,$00,$00,$00 
dc.b $00,$00,$fc,$00,$00,$00 
dc.b $00,$03,$fc,$00,$00,$00 
dc.b $00,$0f,$fc,$00,$00,$00 
dc.b $00,$3f,$fc,$00,$00,$00 
dc.b $00,$ff,$fc,$00,$00,$00 
dc.b $00,$0f,$3c,$00,$00,$00 
d c .b $00,$3c,$00,$00,$00,$00 
d c .b $00,$00,$00,$00,$00,$00 

dc.b $00,$00,$0f,$00,$00,$00 
dc.b $00,$00,$3f,$00,$00,$00 
dc.b $00,$00,$ff,$00,$00,$00 

main 

dc.b 
dc.b 
dc.b 
dc.b 
dc.b 
dc.b 
dc.b 
dc.b 

dc.w 
endr 

proc 
with 

$00,$03,$ff,$00,$00,$00 
$00,$0f,$ff,$00,$00,$00 
$00,$3f,$ff,$00,$00,$00 
$00,$ff,$ff,$00,$00,$00 
$03,$ff,$ff,$00,$00,$00 
$00,$ff,$ff,$00,$00,$00 
$00,$ff,$3f,$00,$00,$00 
$00,$fc,$00,$00,$00,$00 

1,10 

Cursors 

;end of record 

;start of procedure 
;use Cursors as data 

Install Vectors 
php 
phb 
phk 
plb 
long 
sei 

lda >ToolVec 
sta VecSave 
lda >Too1Vec+2 
sta VecSave+2 

lda >Too1Vec1 
sta VecSave1 
lda >Too1Vec1+2 
sta VecSave1+2 

InstallOurs 
lda MyToo l 
sta >ToolVec 
lda MyTool+2 
sta >Too1Vec+2 

lda MyTool1 
sta >Too1Vec1 
lda MyTool1+2 
sta >Too1Vec1+2 

plb 
plp 
lda #0 
clc 
rtl 

MyTool 
jmp >MyToolEnt 

MyTooll 
jmp >MyToolEnt1 

MyToolEnt1 
sec 

;make sure that 
interrupts 
don't kill us! 

;get tool vector 

;get alt tool vector 

;install my tool vector 

;install my alternate 
tool vector 

;copied to t ool vectors 



bra ToolEnt 
MyToolEnt 

clc 
Too lEnt 

php 
cpx JFinitCursor 
bne VecNorm 

plp 
jsl VecCall 
PushWord tO 

GetMasterSCB 
pla 

ldx JFArrow640 
ldy Jf"Arrow640 

and Jfmode640 
bne Is640 

ldx JFArrow320 
ldy #"Arrow320 

;is it the call we 
care about? no ... 

yes! 

;space for result 

Ml.croDot just$ 29.95 
plus $2.50 S&ll 

Just 2.5K in size, but more powerful than BASIC.SYSTEM. 
Imagine doing BASIC overlays simply by specifying the file 
name and the line number where you want to overlay. How 
about loading an array of directory names at machine lan
guage speed. You get this and total control over ProDOS 
that is impossible with BASIC.SYSTEM. Works with Pro
gram Writer ($42.45. Both for $59.95 + S&H). Love it or get 
your money back! Inexpensive publishers' licenses. 

- DealerlnqUineslnvlted 

Kitchen Sink Software, Inc 
903 Knebworth Ct. Dept. 8 
Westerville, OH 43081 
(614) 891-2111 

Is640 
phy 
phx 

SetCursor 
rtl 

VecNorm 
plp 

VecCall 
bcs VecSave1 

Vee Save 
ds.l 

VecSave1 
1 

Dolt 

ds.l 1 

bra VecNorm 

endp ;end of procedure 

end ;end of source c o de 

~---------------------, :Meet Other Apple II Developers!: 
I See and hear about the latest Apple II 1 
: hardware & software developments : 

: Attend Apple's llgs College : 
I I I'Dr mtMl attendees, llljl5df lnduded, the 
Developer& Conference ha&ted by A2-

l Central In July 1989 wa& an uperience 
1 bordering on the reli/POU8. 
I BUI Kennedy, Technical r.dlor. JnCider 

I 
By popular demand, we're putting I 

together another A2-Central S•••er 
OJJali:RIXIe (popularly known In developer I 
circle& u 'Kansasl'est'). Like last year, I 
Apple Is sending a nurriler of Ita engineers I 
to do &emlnars and to run a bug-busting 

I Without uceptJo11, evt:ty attendee I have room. Unlike last year, Apple Is holding a I 
1 tallied to feel& the flr&t A 2-Central llgs College at Avila the day before our 1 
I Detdopen CDnfamcle at Avila College In conference atarbl. I 

Kan&a& City wa& a &uccea.s. The retreat In addllon to speakers from Apple, we'll 
I atmosphere wa& a 'lgnlflcant factor in have talks and demonstrations by active I 
1 mak/ng It 80• developers willing to show their tricks. I 
I CecU l'retweU, Technical r.dltor, Call Apple There will be talks and exhibits by I 

l ~·'tlv companies that provide tools to developers. I As 1 look hac}(. was the mtMl ,.- e And there wUI be plenty of tJme to talk to I 
I computer conference I have ever been to other developers. I 
and I certainly reconunend It to anyone 

I with an intere4t In the Apple 1/ line. Ye&. 1 You mllllt register by June I to get the 1 
I had a great tlme; yes, 1 learned 8 lot; yes, 1 beat prices, which begin at $300 and I 

Include all meals. l'or more Information, I met 80IJif: owtandlng people; and, yes, I'll call A2-Central at 91S-46~02 (voice). I 
go back. 

I AI Hartin. r.dlor, The Road Apple 9ls-469-6507 (fax) or write 1'0 Box 11250,1 
I Overland Park, KS 66207. Or we're I 

Al.Cr.rtTIIAL on AppleUnk and .u.arrrRAL 
I on~~ I 
I A2-Central Summer Conference I 

: Avila College, Kansas City, Mo. : 
I July 20 lt 21, 1990 I 
L---------------------~ 



GENES'YS' 
Now available and shipping! 

Genesys TM ••• the premier resource creation, editing, and source code 

generation tool for the Apple II GS. 

Genesys is the first Apple IIGS CASE tool of its kind with an open

ended architecture, allowing for support of ::~ew resource types as Apple 

Computer releases them by simply copying additional Genesys Editors 

to a folder. Experienced programmers will appreciate the ability to 

create their own style of Genesys Editors, useful for private resource 

creation and maintenance. And Genesys generates fully commented 

source code for ANY language supporting System 5.0. Using the 

Genesys Source Code Generation Langugage (SCGL), the Genesys 

user can tailor the source code generated to their individual tastes, and 

also have the ability to generate source code for new languages, existing 

or not. 

Genesys allows creation and editing of resources using a WYSIWYG 

environment. Easily create and edit windows, dialogs, menu bars, 

menus menu items, strings of all types, all the new system 5.0 controls, 

icons, cursors, alerts, and much more without typing, compiling, or 

linking one single line of code. 

The items created with Genesys can be saved as a resource fork or turned 

into source code for just about any language. Genesys even allows you 

to edit an existing program that makes use of resources. 

Genesys is guaranteed to cut weeks, even months, off program develop

ment and maintenance. Since the interface is attached to the program, 

additions and modifications take an instant effect. 

Budding programmers will appreciate the ability to generate source 

code in a variety of different languages, gaining an insight into 

resources and programming in general. Non-programmers can use 

Genesys to tailor programs that make use of resources. Renaming 

menus and menu items, adding keyboard equivalents to menus and 

controls, changing the shape and color of windows and controls, and 

more. The possibilities are almost limitless! 

Genesys is an indispensable tool for the programmer and non
programmer alike! 

Retail Price: $150.00 

Order by phone or by mail. Check, money order, MasterCard, Visa and 
American Express accepted. Please add $5.00 for SIH 
Simple Software Systems International, Inc. 

~~:~~~.!:=: Dr. ( 404) 928-4 3 8 8 

SSSi is pleased to announce that we will be carrying the GS Sauce memory card by 
Harris Laboratories. This card offers several unique features to Apple//gs owners: 

Made in USA 
Limited Lifetime Warranty 
100% DMA compatable 
100% GS/OS 5.0 and ProDOS 8 & 16 compatable 
Installs in less than 15 seconds! 
Low-power CMOS chips 
Uses "snap-in" SIMMs modules - the same ones used on the Macintosh 
Recycle your Macintosh SIMMs modules with GS Sauce. 
Expandable from 256K to 4 Meg of extra DRAM 

This card is 100% compatable with all GS software and GS operating systems. It 
is 100% tested before shipping and has a lifetime warranty. The CMOS technol
ogy means that it consumes less power and produces less heat thus making it easier 
on your //gs power supply. There are no jumpers, just simple to use switches to set 
the memory configuration. One step installation takes less than 15 seconds. 

Memory configurations: 
Apple //gs model 
256K (ROM 1) 

add these: 
(1) 256K SIMM 
(2) 256K SIMMs 
(4) 256K SIMMs 
(1) 1 Meg SIMM 
(2) 1 Meg SIMMs 
(4) 1 Meg SIMMs 

total GS RAM 
512K 
768K 

1.25 Meg 
1.25 Meg 
2.25 Meg 
4.25 Meg 

1 Meg (ROM 3) (1) 256K SIMM 1.25 Meg 
(2) 256K SIMMs 1.50 Meg 
(4) 256K SIMMs 1.78 Meg 
(1) 1 Meg SIMM 2.0 Meg 
(2) 1 Meg SIMMs 3.0 Meg 
(4) 1 Meg SIMMs 5.0 Meg 

Please note that you can not mix 256K and 1 Meg SIMMs packages on the same GS 
Sauce card, and that expansion must be performed in (1), (2) or (4) SIMMs modules. 

Pricing: 
We are offering a limited time "get acquainted" offer to our customers. The GS 
Sauce card is available from SSSi as: 

OK $89.95 - use your own 256K or 1 Meg SIMMs modules 
1 Meg $179.95 
2 Meg $269.85 
4 Meg $449.75 

B' We are making a special offer to our Genesys users: 
Buy Genesys and and get a coupon to purchase GS Sauce for: 

OK $79.95- use your own 256K or 1 Meg SIMMs modules 
1 Meg $159.90 
2 Meg $239.85 
4 Meg $399.75 

We hope you will see what an excellant value the GS Sauce card is: low power 
consumption, SIMMs technology, inexpensive, made in USA and lifetime war
ranty! 
Call or write for seperate 256K and 1 Meg SIMMs modules to upgrade your GS 

•• ~ 
~ 



KAT will sell no drive 
before it's time ... 
KAT will not ship a hard drive without first: 

• Conferring with you about your entire system and setting the drive's interleave so as to insure optimal 
preformance for you. 
• Discussing the various partioning options and then setting them up to fit your specifications. 
• Depositing 20 megabytes of freeware, shareware, the latest system software, and all sorts ofbonus goodies 
on the drive. 
• Testing the drive for 24 hours before shipping it out. 

KAT drives come in industrial-quality cases that have 60 watt power supplies (115-230 volts), cooling fans, 
two 50 pin connectors and room for another half-height drive or tape back-up unit. We also include a 6ft. SCSI 
cable to attach to your SCSI card. You get all of this plus a one-year warranty on parts and labor! 

SB 48 Seagate 48 meg 40ms 
SB 85 Seagate 85 meg 28ms 
SB 105 Quantum 105 meg 12 ms 

$549.99 
$698.99 
$849.99 

Looking for an even hotter system? Call and ask for a quote on our 170, 300, & 600 megabyte Quantum drives! 

So ya wanna build yer own? Let KAT provide you with the finest parts available ... 

SB Case 2 HH Drives 7w 5h 16d 
ZF Case 1 HH Drive lOw 3h 12d 
48 meg HD Seagate 40 ms 3.5" SCSI 
85 meg HD Seagate 28 ms 5.25" SCSI 
105 meg HD Quantum 12 ms 3.5" SCSI 

$139.99 
$169.99 
$349.99 
$469.99 
$669.99 

T-60 Tape Teac 60 meg SCSI 
with hard drive 

3.5" to 5.25" Frame 
Cable 25 pin to 50 pin 6 ft. 

50 pin to 50 pin 6 ft. 

$449.99 
$424.99 
$ 12.50 
$ 19.99 
$ 19.99 

Programmers! Check our prices on your favorite 
development packages and accessories ... 

Byte Works 
Orca C $89.99 
Orca M $44.99 
Orca Pascal $89.99 
Orca Disassembler$34.99 

Other software and accessories: 

Vitesse, Inc. 
Excorciser, virus detection system $ 29.95 
Renaissance, hard disk optimizer $ 34.95 
Guardian, program selector and disk utilities 
$34.95 

Applied Eng. Transwarp GS $289.99 
Keytronic 105 Key ADB Keybrd $139.99 

Roger Wagner Publishing 
Hyperstudio $94.99 
Macromate $37.99 

Stone Edge Technologies 
DB Master Pro $219.99 

Quickie, terrific hand scanner(400 dpi, 16 grays)$249.99 

Computer Peripherals 
ViVa24, 2400 baud, 100% Hayes compatible modem 
(comes with a FIVE YEAR Warranty) $139.99 

1 meg SIMMs 80 ns $89.99 
1 meg X 1 80 ns 8/$79.99 

Call the KAT at (913) 642-4611 or write: KAT, 8423 W 89th St, Overland Park, KS 66212-3039 



by Murphy Sewall 

From the June 1990 APPLE PULP,H.U.G.E. Apple Club (E. Hartford) News Letter 
P.O. Box 18027,East Hartford, CT 06118 

Apple llgs - Mac Merger? 
Apple is beta testing a number of products intended to, eventually, make the distinction between the Macintosh and 
the older II line functionally irrelevant. Jigs Operating System 6 and Jigs HyperCard (yes, they really are in beta test) 
will make the llgs appear more Mac-like than ever. A "Multi-Finder llgs" which allows hard disk space to be used as 
virtual RAM also is nearing marketable shape. Future ApP.Ie computers are likely to offer compatibility with older 
software by using the technology of the //eon a chip which manages the 1/0 and video on the Mac llfx (Did everyone 
catch John Sculley's reference to the "Macintosh llgs" during Apple Vision 90's for educators on April24)? Apple has, 
but has not committed to market, a Mac Plus board for the llgs as well as the 16 MHz 68000 "under$2,000"color (under 
$1 ,500 black and white) Mac SE compatible with Apple II coprocessor. An Apple II board for the Mac II family also is 
in beta test. Apple executives may still be trying to decide which options to offer and when to announce them. Sources 
indicate they can only continue to hum a tune which sounds vaguely like "September Song."- found in my electronic 
mailbox 

Not PCjr. 
In August, IBM will once again attempt to penetrate the home market. This time Big Blue will endeavor to avoid a repeat 
of the PCjrfailure by offering practical power at street prices as low as $1,000. MS-DOS, Microsoft Works, and Prodigy 
software will be bundled with the 10 MHz 80286-based AT-bus "Bluegrass" desktop (see last July's column) from their 
typewriter division. The list price will be between $1,300 and $2,000 depending on configuration. The display will 
support VGA; a 1.44 Mbyte 3.5 inch drive and 640K of RAM are standard. There are no expansion slots, but options 
do include a built-in 2400 baud modem, a 30 Mbyte hard disk, and a mouse. - PC Week 23 April 

Lap Size LapMac. 
Apple and Toshiba are working on a four to six pound Macintosh laptop to replace the current overpriced Mac Anvil, 
er Portable. - lnfoWorld 23 April 

Zip's llgs Accelerator. 
Zip Technology is beta testing a 12 MHz accelerator for the Apple llgs which contains only 22 chips (compared to more 
than 200 on the older, slower Applied Engineering accelerator). Alas, the problem is that although the hardware zips, 
marketing doesn't. It may be some time before Zip ships. -found in my electronic mailbox 

New NeXT. 
Steve Jobs says that NeXT will offer a Motorola 68040 based workstation with a very high resolution color monitor and 
at least six new applications by Christmas. Among the workstation's features will be built-in modem and fax capabilities. 
Mr. Jobs also said that owners of the present 68030 model will be able to upgrade motherboards for $1 ,495. Motorola 
claims the 25 MHz 68040 at 20 MIPS is 1 Otimefasterthanthe 68030 and outperforms the 25 MHz lntel486. -lnfoWorld 
and PC Week 14 May 

Laser GS. 
Video Technologies is telling dealers in Canada that their 10 MHz Apple llgs clone (see last September's column) which 
was shown to developers last July will be for sale by Christmas. - found in my electronic mailbox 

Multiple Emulations. 
A reader of last month's column's touting of AIUX's ability to run UNIX, Macintosh, and MS-DOS software noted that 



the the new Amiga 3000 (see last February's column) will be able to run UNIX, AmigaOS, and MS-DOS. A Macintosh 
board is available for the Amiga but requires Mac ROM chips which are not easy to come by. Apparently, UNIX for the 
Amiga has been delayed until fall. 

PostScript for the Masses. 
Adobe Systems plans a major rewrite of its page description language and a family of inexpensive PostScript controllers. 
Pat Marriott, the firm's director of marketing, says ''within 18 months, Adobe's goal is to offer OEMs a range of controllers 
to bring users PostScript printers for under $1 ,000." Meanwhile, Apple plans to hold increase the performance of its 
LaserWriter line by offering 
a faster version of the IINTX within a few weeks.- PC Week 7 and 14 May 

Mac System 7.0 Delayed Untii'Vear's End 
Roger Heinen, Apple's vice president of software development, has reversed earlier assertions that the new Macintosh 
operating system announced last year is "on schedule" (see last month's column). Developers were told last month that 
"by New Year's, almost all of our users should have an opportunity to upgrade to System 7.0." Tony Meadows, former 
director of a Northern California Mac 
developers group translated "by New Year's" as meaning next January's MacWorld. A key feature of System 7 which 
Apple wants all developers to use is a set of application standards referred to as lnterapplication Communication (lAC). 
lAC is designed for seamless communication among applications which should make it easier to build hybrid 
applications which collaborate with one another.- lnfoWorld 14 May 

New HyperCard. 
HyperCard 2.0, a major rewrite, will be announced on June 26 and will ship with all Macs starting in July. Version 2.0 
features variable card sizes, multiple windows, and a "style text" feature compatible with True Type, better printing 
capabilities, and enhanced HyperTalk. Version 2.1 will ship with System 7.0 and will offer Apple Events scripting and 
Mac Apps via HyperTalk. - lnfoWorld 14 May 

1-2-3 For Windows. 
Lotus has announced an intention to deliver a 1-2-3 product for Microsoft Windows 3.0 which will offer the core 
spreadsheet functions of 1-2-3 version 3.0 along with the look and feel of the 1-2-3/G Presentation Manager version. 
In the interim, Lotus plans to ship version 3.1 during the third quarter. The update will incorporate PC Publishing's 
Impress program to provide WYSIWYG graphics publishing and drawing features. - PC Week 7 and 14 May 

Flash in the Pan. 
Don't expect any upgrades of bug fixes for Flash, Beagle's only Macintosh product. The only Mac programmer on 
Beagle's staff has left to work on Photo Shop for Adobe Systems (said to be an improved version of Pixel Paint 
Professional) . Flash's future is limited anyway because Macintosh System 7.0 will offer it's major functions. - found in 
my electronic mailbox 

Upgrades One of These Days. 
dBase IV version 1.1 , the alleged "bug fix," will appear this month and will still have bugs in it. Xyquest, which had 
announced an upgrade of Xywrite for the first quarter 1990 (did you miss it?), will delay shipping until late summer or 
early fall in order to add more features. Software Publishing plans to unveil two new DOS versions and an OS/2 
Presentation Manager version of its popular Harvard Graphics by the end of the year. Harvard Graphics 2.3, an update 
to version 2.12, is expected in late June. Version 3.0 is slated for release in the fourth quarter along with the OS/2 PM 
version. Word Perfect Corporation officials have confirmed that a version of their popular word processor is forthcoming 
for the Windows 3.0 environment. While there is no definite shipment date, managers said they expect to deliver the 
Windows version within six months of the release of the forthcoming OS/2 Presentation Manager product. Word Perfect 
also is working on a scaled-down version of Word Perfect 5.1 called Letter Perfect for laptop users and others who don't 
need all the features of version 5.1 - lnfoWorld 23 and 30 April and PC Week 7 May 



• 8/16 on Disk • 

The magazine you are now holding in your hands is but a subset of the material on the 8/16 disk. We 
have combed the BBS's and data services across the country to collect the best of the public domain 
and shareware offerings for programmers. Not only that. but we have extra articles and source code 
written by our staff. With DLT 16 and D LT8 (Display Launcher Thingamajigs) to guide you, you can read 
articles, display graphics, and even launch applications. NOTE: DLT16 requires GS/OS v 5.02 on 
your system. 

Highlights (so far every disk has had more than 650K of material!): 

• March '90: 

• April '90: 

• May '90: 

• June '90: 

1 year - $69.95 

8 bit- the entire source code to Floyd Zink's Binary Library Utility. 16 bit- Bill 
Tudor's fantastic InitMaster CDEV, Parik Rao's Orca/APW utilities 
8 bit - SoftWorks, an AppleWorks™ filecard interface for Applesoft programs, the 
source code to Bruce Mah's File Attribute Zapper. 16 bit- More Orca and .APW 
utilities, Phil Doto's APF viewer 
8 bit- Tom Hoover's AppleWorks Style Line Input. 16 bit -Bryan Pietrzak's shell 
utilities for Orca/ APW, Steve Lepisto's "Illusions of Motion". 
8 bit - 3D graphics package, MicroDot™ Demo, DiskWorks, 80 column screen 
editor. 16 bit- Assembly Source Code Converter (shareware). Install DA (on the fly; 
by our our own Eric Mueller), Find File source code. 

6 months - $39.95 3 months - $21 Individual disks are $8.00 each 

• Shem The Penman's Guide To Interactive Fiction • 
This is undoubtedly my personal favorite of all our software offerings. First of all, it is FUN. Second of 
all it is a very well organized, well written, and well programmed introduction to programming 
interactive fiction. It is, in fact, the only package of its kind I've ever seen! 

Author Chet Day is a professional writer (go buy Hacker at your nearest book store!) and an educator 
who is as conerned with the content of your interactive fiction program as with the form. This package 
is fun, entertaining, and useful. It includesApplesoft. ZBasic, and MicolAdvanced Basic "shells" which 
will drive your creations- $39.95 (both 5.25" and 3.5" disks supplied). P.S. The advantage to the 
ZBasic and Micol versions is that with the easy integration of text and graphics provided in those 
langauges. you can easily load a graphic and overlay text in the appropriate spots. 

• ProTools™ • 

Fast approaching its first birthday. our Pro Tools library for ZBasic programmers has grown into a 
mature and powerful product. It's bigger than ever, too. inCider'sJoe Abernathy called it, " ... the only 
way to go for ZBasic programmers." 



ProTools includes a text based and a double high resolution graphics based desktop interface (pull
down menus. windows. mouse tracking, etc.) Both desktops support quick-key equivalents for menu 
items. too! We've added a thirddesktop package in version 2 .5 ofProTools. too. This one is mouseless. 
meaning that it is entirely keyboard driven and therefore much more compact than its predecessors. 

ProTools contains literally scores of additional functions and routines. including: 

• FRAME.FN • SMARf.INPUT.FN • SCROLL. MENU .FN 
• GETMACHID • GETKEY.FN • SCREENDUMP80 
• SA VE_SCREEN • DIALOG • CRYPT 
• DATETIME • BARCHARr • LINE GRAPH 
• ONLINE • PASSWORD • READTEXT 
• SETSPEED •VERTMENU • PATHCK 

ProTools is $39.95 (your choice of 3.5" or 5.25" disks). 

• Back issues of The Sourceror's Apprentice • 

Ross's Recommendations: 

8 bit: 

16 bit: 

Feb '89 - Relocation Without Dislocation. by Karl Bunker 
... techniques for writing relocatable 8 bit code 
Jan, Mar, Apr, Aug '89- The Applesoft Connection Parts l-4. by Jerry Kindall 
... using the ampersand vector and intemal Applesoft routines. A classic series. 
Jun '89 - Peeking at Auxiliary Memory: A Monitor Utility, by Matthew Neuberg 
.. .lets the monitor display aux mem. an invaluable l28K programming tool. 
Sep '89- Getting More Value(s) From Your Game Port. Eric Soldan 
.. .increase range of values retumed by a joystick for DHR coordinates. etc. 

Jan '89 - Programming with Class l, by Jay Jennings 
... an introduction to GS/OS class l calls 
Mar & Jun '89- Vectored Joystick Programming. by Stephen Lepisto 
... a technique for increasing responsiveness in reading the joystick 
July '89- Making a List (and checking it twice). by Ross W. Lambert 
... an introduction to the GS List Manager 
Sep '89 - Generic Start II , The Sequel. by Jay Jennings 
... an introduction to the new start up song and dance for new system software 
Jan '90- Trapping Tricky Tool Errors. by Jay Jennings 
.. . a classy programmer's error trap for the GS. 

All back issues are $3.00 each (postage and handling included except for non-North American orders. 
Those of you on other shores please add $1.50 extra per issue). 

Our guarantee: Ariel Publishing guarantees your satisfaction with our entire product line (software 
and publications). If you are ever dissatisfied with one of our products. we will cheerfully refund the 
amount you paid on your request. To order. just write to: Ariel Publishing, Box 398, Pateros, WA 
98846 or call (509) 923-2249. 



The Sensational Lasers 
Apple lle/llc Compatible 

$345s~7t~~1:~r~g~e~s! 

The Laser 128® features full Apple@ II compatibility with an Internal disk drive, senal, paral lel, modem. and 
mouse ports. When you're ready to expand your system. there 's an external drive port and expans1on slot The 
Laser 128 even 1ncludes I 0 free software programs' Take advanlage of th1s exceplional value today .... $345 

Super High Speed Option! 

only $385 
The LASER 128EX has all the features of the 
LASER 128, plus a triple speed processor and 
memory expansion to 1MB ........ $385.00 

The LASER 128EX/2 has all the features of the 
LASER 128EX, plus MIDI, Clock and Daisy 
Chain Drive Controller .. . ......... $420.00 

DISK DRIVES 
* 5.25 LASER/Apple 11c ... . ....... $ 99.00 
* 5.25 LASER/Apple 11e ........... $ 99.00 
* 3.50 LASER/ Apple BOOK ..... . .... $179.00 
* 5.25 LASER Daisy Chain .. . ~$109.00 
* 3.50 LASER Daisy Chain ... ~$179.00 

USA MICRO 

Save Money by Buying 
a Complete Packagel 

THE STAR a LASER 128 Computer with 12" 
Monochrome Monitor and the LASER 145E 
Printer . ....... . ... .. ... ..... .... $620.00 

THE SUPERSTAR a LASER 128 Computer with 
14" RGB Color Monitor and the LASER 145E 
Printer .... ... ... ........ .... . . . . $785.00 

ACCESSORIES 
• 12" Monochrome Monitor .... . ... $ 89.00 
• 14" RGB Color Monitor ....... . ... $249.00 
* LASER 190E Printer ...... . .... . . $219.00 
* LASER 145E Printer ... . .. . ~$189.00 
• Mouse ..... . .... ...... . . .. . ... $ 59.00 
• Joystick (3) Button . .... . ........ $ 29.00 
• 1200/2400 Baud Modem Auto .. .. . $129.00 

YOUR DIRECT SOURCE FOR APPLE 
AND IBM COMPATIBLE COMPUTERS 

Laser 128 •s a reg<slered trademark ot V1deo Technology Computers. Inc Apple. Apple lie. Apple 11c ana lmagewr~ter are re;ostere(ltra~emarks o1 Apple Computer.lnc 

BULK RATE 
U.S. POSTAGE 

PAID 
PATEROS, WA 
PERMIT NO.7 

http://apple2scans.net


	8/16 - Kansas or Bust!
	The Publisher's Pen - Ross W. Lambert
	The Weekend Hardware Hacker: Speech Recognition: Give Your Apple ][-Ears! - David Gauger
	IIGS Animation: Illusions of Motion, Part III - Stephen P. Lepisto
	MD-BASIC: A Review - Jay Jennings
	Insecticide
	SouthPaw: Changing Your Orientation - Jason Blochowiak
	Vaporware - Murphy Sewall
	From the House of Ariel



